CHIRAL TETRAARYLMETHANE DERIVATIVE
547
13. Miyasaka M, Pink M, Rajca S, Rajca A. Noncovalent interactions in the
asymmetric synthesis of rigid, conjugated helical structures. Angew
Chem Int Ed Engl 2009;48:5954–5957.
CD spectrum. It is remarkable that upon oxidation of 1 a re-
versal of HPLC elution order is observed using identical con-
ditions for the enantioseparation.
14. Asonso-Go´mez JL, Navarro-Va´zquez A, Cid MM. Chiral (2,5)pyrido[74]al-
lenoacetylenic cyclophanes: synthesis and characterization. Chem Eur J
2009;15:6495–6503.
CONCLUSIONS
´
15. Sciebura J, Skowronek P, Gawronski J. Trityl ethers: Molecular bevel
In summary, we have synthesized tris(pyridine N-oxide)
2, a novel chiral pyridine N-oxide derivative. The compound
was resolved by chiral HPLC and characterized by CD spec-
troscopy. The second-eluted enantiomer [CD(1)283]-2 was
determined to have (R)-configuration by the comparison of
the theoretical CD curve with the experimental CD spectra
(Fig. 6), which was further supported by chemical correla-
tion with (R)-1. The absolute configuration assignments of 1
and 2, based on two independent CD calculations, reinforce
each other. The X-ray analysis of racemic crystal of 2 unam-
biguously revealed the positions of the nitrogen atoms by
the ‘‘marking’’ with oxygen atoms. We are now planning to
isolate a single crystal of enantiopure 2 to ultimately deter-
mine the absolute configuration by X-ray crystallographic
analysis and to investigate the potentially interesting nonlin-
ear optical and dielectric properties. In the case that the
absolute configuration could not be determined by X-ray
crystallographic analysis because of meaningless Flack pa-
rameter,49 we will record the solid-state CD spectrum of the
microcrystalline enantiopure 2 and compare it with TDDFT
calculation on the X-ray structure.47 We are also investigating
new chiral molecules having tetraarylmethane framework.
gears reporting chirality through circular dichroism spectra. Angew
Chem Int Ed Engl 2009;48:7069–7072.
16. Schreiner PR, Fokin AA, Reisenauer HP, Boryslav A, Tkachenko BA,
Vass E, Olmstead MM, Bla¨ser D, Boese R, Dahl JEP, Carlson RMK.
[123]Tetramantane: parent of a new family of r-helicenes. J Am Chem
Soc 2009;131:11292–11293.
17. Moberg C. C3 symmetry in asymmetric catalysis and chiral recognition.
Angew Chem Int Ed Engl 1998;37:248–268.
18. Gibson SE, Knight JD. Paracyclophane derivatives in asymmetric cataly-
sis. Org Biomol Chem 2003;1:1256–1269.
19. Hoffmann-Ro¨der A, Krause N. Synthesis and properties of allenic natural
products and pharmaceuticals. Angew Chem Int Ed Engl 2004;43:1196–
1216.
20. Brunel JM. BINOL: A versatile chiral reagent. Chem Rev 2005;105:857–897.
21. Botek E, Andre´ JM, Champagne B, Verbiest T, Persoons A. Mixed elec-
tric-magnetic second-order nonlinear optical response of helicenes.
J Chem Phys 2005;122:234713/1–234713/6.
22. Ding K, Han Z, Wang Z. Spiro skeletons: A class of privileged structure
for chiral ligand design. Chem Asian J 2009;4:32–41.
23. Bajracharya GB, Arai MA, Koranne PS, Suzuki T, Takizawa S, Sasai H.
Development of chiral spiro ligands for metal-catalyzed asymmetric reac-
tions. Bull Chem Soc Jpn 2009;82:285–302.
24. Luo S, Zhang L, Cheng JP. Functionalized chiral ionic liquids: a new type
of asymmetric organocatalysts and nonclassical chiral ligands. Chem
Asian J 2009;4:1184–1195.
25. Matsumoto K, Inagaki T, Nehira T, Kannami M, Inokuchi D, Kurata H,
Kawase T, Pescitelli G, Oda M. Phenyl-(2-pyridyl)-(3-pyridyl)-(4-pyridyl)-
methane: synthesis, chiroptical properties, and theoretical calculation of
its absolute configuration. Chem Asian J 2007;2:1031–1036.
LITERATURE CITED
1. Haesler J, Schindelholz I, Riguet E, Bochet CG, Hug W. Absolute config-
uration of chirally deuterated neopentane. Nature 2007;446:526–529.
2. Ishikawa T, Shimasaki T, Akashi H, Toyota S. Enantiopure anthrylene–
ethynylene cyclic tetramer and racemization via rotation of anthracene
unit about acetylenic axes. Org Lett 2008;10:417–420.
26. Chelucci G, Murineddu G, Pinna GA. Chiral pyridine N-oxides: useful
ligands for asymmetric catalysis. Tetrahedron Asymm 2004;15:1373–1389.
ˇ
27. Malkov AV, Kocovsky´ P. Chiral N-oxides in asymmetric catalysis. Eur J
3. Igawa K, Takada J, Shimono T, Tomooka K. Enantioselective synthesis
of silanol. J Am Chem Soc 2008;130:16132–16133.
Org Chem 2007;29–36.
ˇ
28. Malkov AV, Kabeshov MA, Barłog M, Kocovsky´ P. Enantioselective and
4. Kawabata T, Jiang C, Hayashi K, Tsubaki K, Yoshimura T, Majumdar S,
Sasamori T, Tokitoh N. Axially chiral binaphthyl surrogates with an inner
N–H–N hydrogen bond. J Am Chem Soc 2009;131:54–55.
catalytic method for a-crotylation of aldehydes with a kinetic self-refine-
ment of stereochemistry. Chem Eur J 2009;15:1570–1573.
29. Chen J, Takenaka N. Helical chiral pyridine N-oxides: a new family of
5. Benincori T, Marchesi A, Mussini PR, Pilati T, Ponti A, Rizzo S, Sanni-
colo F. Chirality in the absence of rigid stereogenic elements: the abso-
lute configuration of residual enantiomers of C3-symmetric propellers.
Chem Eur J 2009;15:86–93.
asymmetric catalysts. Chem Eur J 2009;15:7268–7276.
30. Halgren TA. Representation of van der Waals (vdW) interactions in mo-
lecular mechanics force fields: potential form, combination rules, and
vdW parameters. J Am Chem Soc 1992;114:7827–7843.
6. de Meijere A, Rauch K, Schrader B, Brackmann F, Pfoh R, Ru¨hl S, Katoh
Y, Okamoto Y, Wodrich MD, Corminboeuf C, Schreiner PR. 1,10-Bi(trish-
omobarrelenyl) – synthesis and chiroptic properties. Eur J Org Chem
2009;1048–1052.
31. Halgren TA. Merck molecular force field. I. Basis, form, scope, parame-
terization, and performance of MMFF94. J Comput Chem 1996;17:490–
519.
32. Halgren TA, Nachbar RB. Merck molecular force field. IV. Conforma-
tional energies and geometries for MMFF94. J Comput Chem 1996;17:
587–615.
7. Masued Reza AFG, Higashibayashi S, Sakurai H. Preparation of C3-symmet-
ric homochiral syn-trisnorbornabenzenes through redioselective cyclotrime-
rization of enantiopure iodonorbornenes. Chem Asian J 2009;4: 1329–1337.
33. Halgren TA. MMFF VI. MMFF94s option for energy minimization stud-
ies. J Comput Chem 1999;20:720–729.
8. Sakane H, Amaya T, Moriuchi T, Hirao T. A chiral concave-bound cyclo-
pentadienyl iron complex of sumanene. Angew Chem Int Ed Engl 2009;
48:1640–1643.
¯
34. Goto¯ H, Osawa E. Corner flapping: a simple and fast algorithm for ex-
haustive generation of ring conformations. J Am Chem Soc 1989;111:
8950–8951.
9. Shirakawa S, Shimizu S. Synthesis of an inherently chiral calix[4]arene
amino acid and its derivatives: their application to asymmetric reactions
as organocatalysts. Eur J Org Chem 2009;1916–1924.
¯
35. Goto¯ H, Osawa E. An efficient algorithm for searching low-energy con-
formers of cyclic and acyclic molecules. J Chem Soc Perkin Trans2
1993;187–198.
10. Graule S, Rudolph M, Vanthuyne N, Autschbach J, Roussel C, Crassous
J, Re´au R. Metal–bis(helicene) assemblies incorporating p-conjugated
phosphole-azahelicene ligands: impacting chiroptical properties by metal
variation. J Am Chem Soc 2009;131:3183–3185.
36. Becke AD. Density-functional thermochemistry. III. The role of exact
exchange. J Chem Phys 1993;98:5648–5652.
37. Rassolov VA, Ratner MA, Pople JA, Redferm PC, Curtiss LA. 6–31G* ba-
sis set for third-row atoms. J Comput Chem 2001;22:976–984.
11. Alonso-Go´mez JL, Rivera-Fuentes P, Harada N, Berova N, Diederich F.
An enantiomerically pure alleno-acetylenic macrocycle: synthesis and
rationalization of its outstanding chiroptical response. Angew Chem Int
Ed Engl 2009;48:5545–5548.
38. Scha¨fer A, Christian H, Ahlrichs R. Fully optimized contracted Gaussian
basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys
1994;100:5829–5835.
12. Mori K, Ohmori K, Suzuki K. Hydrogen-bond control in axially chiral
styrenes: selective synthesis of enantiomerically pure C2-symmetric para-
cyclophanes. Angew Chem Int Ed Engl 2009;48:5638–5641.
39. Dreuw A, Head-Gordon M. Single-reference ab initio methods for the calcu-
lation of excited states of large molecules. Chem Rev 2005;105:4009–4037.
Chirality DOI 10.1002/chir