D. Hazelard, A. Fadel / Tetrahedron: Asymmetry 16 (2005) 2067–2070
2069
O
1) LDA,
-78 ˚C
1) LDA,
-78 ˚C
N
N
x
Ph
2) Guaiacol
2) Br-Bn,
-78 ˚C
Bn
Bn
(R)-2a
Ph
5A
6A.a
de = 24%
no inversion
Scheme 3. Attempt to improve enantiomeric excess by double LDA treatment.
RX
RX
H
R'
R'
OCH3
Li
O
R
O
R
N
R'
O
O
R'
N
N
H
Li
Z
H
E
Z
E
R'
O
O
R'
OCH3
R'
R'
(+)-2
(–)-2
8C
RX
8B
RX
Figure 1. Proposed mechanism of enamine cyclobutanone alkylation.
6. Hazelard, D.; Fadel, A.; Morgant, G. Tetrahedron:
Asymmetry 2004, 15, 1711.
7. (a) Miesch, M.; Miesch, L.; Horvatovich, P.; Burnouf, D.;
3. Conclusion
We have developed a practical asymmetric alkylation
for the synthesis of (R)-benzyl-, (S)-octyl-, and (S)-tetra-
dec-50-enylcyclobutanones or antipodes with reasonably
good yields and high enantiomeric excesses up to 87%,
thus providing the first preparation of optically active
2-benzyl- and 2-tetradec-50-enylcyclobutanones.14 This
approach should constitute a complementary method
to our enzymatic reaction6 for preparing several opti-
cally active cyclobutanones used in the synthesis of
enantiopure aminocyclobutanecarboxylic acids,4 which
is currently in progress in our laboratory.
´
Delincee, H.; Hartwig, A.; Raul, F.; Werner, D.; Marchi-
oni, E. Radiat. Phys. Chem. 2002, 65, 233; (b) Nordvik, T.;
Brinker, U. H. J. Org. Chem. 2003, 68, 9394; (c) Verniest,
G.; Boterberg, S.; Colpaert, J.; Van Thienen, T.; Stevens,
C. V.; De Kimpe, N. Synlett 2004, 1273.
8. (a) Ndiaye, B.; Jamet, G.; Miesch, M.; Hasselmann, C.;
Marchioni, E. Radiat. Phys. Chem. 1999, 55, 437; (b) Le
Tellier, P. R.; Nawar, W. W. Lipids 1972, 7, 75.
9. (a) Commercially available or prepared following Enders,
D.; Eichenauer, H.; Pieter, R. Chem. Ber. 1979, 112, 3703;
(b) Enders, D.; Eichenauer, H.; Bauss, U.; Schubert, H.;
Kremer, K. A. M. Tetrahedron 1984, 40, 1345.
10. (a) Data for crude 5A: 1H NMR (CDCl3): d 1.47 (d,
J = 6.5 Hz, 3H), 1.80–2.10 (m, 2H), 2.75–3.15 (m, 4H),
4.42 (q, J = 6.5 Hz, 1H), 7.13–7.46 (m, 5H); 13C NMR
(CDCl3): d 13.1 (C3), 24.3 (CH3), 34.6 (C4), 37.9 (C2), 60.2
References
0
1. For optically active cyclobutanones, see (a) Fitjer, L.
Cyclobutanes. In Synthesis: by Ring Enlargement In
Houben-Weyl (Methods of Organic Chemistry); de Mei-
jere, A., Ed.; Thieme: Stuttgart, 1997; Vol. E 17e, p 251;
(b) Lee-Ruff, E.; Mladenova, G. Chem. Rev. 2003, 103,
1449; (c) Nemoto, H.; Miyata, J.; Hakamara, H.; Fukum-
oto, K. Tetrahedron Lett. 1995, 36, 1055; (d) Nemoto, H.;
Miyata, J.; Hakamara, H.; Nagamochi, M.; Fukumoto,
K. Tetrahedron 1995, 51, 5511, and references cited
therein; (e) Krief, A.; Ronvaux, A.; Arounarith, T.
Tetrahedron 1998, 54, 6903; (f) Cho, S. Y.; Cha, J. K.
Org. Lett. 2000, 2, 1337.
(C1 ), [6 arom. C: 126.6 (2C), 126.7 (1C), 128.3 (2C), 145.2
(1C)], 170.9 (C@N).
(b) Data for crude 5B: 1H NMR (CDCl3): d 1.82–2.08 (m,
2H), 2.66–2.86 (m, 1H), 2.86–3.20 (m, 3H), 3.37 (s, 3H),
3.60 (dd, J = 4.5, 9.3 Hz, 1H), 3.70 (dd, J = 8.3, 9.3 Hz,
1H), 4.465 (dd, J = 4.5, 8.3 Hz, 1H), 7.20–7.45 (m, 5H);
13C NMR (CDCl3): d 13.0 (C3), 35.2 (C4), 38.0 (C2), 59.0
(CH3), 65.0 (CH–N), 78.0 (CH2–O), [6 arom. C: 127.1
(1C), 127.3 (2C), 128.3 (2C), 140.9 (1C)], 173.9 (C@N).
(c) Data for crude 5C: 1H NMR (CDCl3): d 1.55–1.74 (m,
1H), 1.74–2.10 (m, 5H), 2.42–2.74 (m, 1H), 2.80–3.21 (m,
4H), 3.22–3.40 (m, 3H), 3.38 (s, 3H, CH3), 3.54 (dd,
J = 3.7, 9.3 Hz, 1H, CH2O); 13C NMR (CDCl3): d 14.0
(C3), 22.3 (t), 25.9 (t), 35.1 (C4), 36.0 (C2), 53.4 (t), 59.1 (q),
65.7 (d), 75.1 (t), 154.9 (C1).
2. (a) Yoshida, M.; Ismail, M. A. H.; Nemoto, H.; Ihara, M.
J. Chem. Soc., Perkin Trans. 1 2000, 2629; (b) Bernard, A.
M.; Frangia, A.; Piras, P. P.; Secci, F. Org. Lett. 2003, 5,
2923; (c) Ollivier, J.; Legros, J.-Y.; Fiaud, J. C.; de
11. Stereoselective alkylation was reported for cyclopenta-
none and cyclohexanone: see (a) Kitamato, M.; Hiroi, K.;
Terashima, S.; Yamada, S. Chem. Pharm. Bull. 1974, 22,
459; (b) Meyers, A. I.; Williams, D. R.; Druelinger, M. J.
Am. Chem. Soc. 1976, 98, 3032; For the SAMP-/RAMP-
hydrazone methodology in asymmetric synthesis: see (c)
Job, A.; Janeck, C. F.; Bettray, W.; Peters, R.; Enders, D.
Tetrahedron 2002, 58, 2253; (d) Enders, D.; Eichenauer, H.
Chem. Ber. 1979, 112, 2933.
Meijere, A.; Salaun, J. Tetrahedron Lett. 1990, 31,
4135.
¨
3. (a) Fadel, A.; Khesrani, A. Tetrahedron: Asymmetry 1998,
9, 305; (b) Fadel, A.; Tesson, N. Eur. J. Org. Chem. 2000,
2153; (c) Tesson, N.; Dorigneux, B.; Fadel, A. Tetrahe-
dron: Asymmetry 2002, 13, 2267.
´
4. Truong, M.; Lecornue, F.; Fadel, A. Tetrahedron: Asym-
metry 2003, 14, 1053, and references cited therein.
5. Salaun, J.; Fadel, A.; Conia, J. M. Tetrahedron Lett. 1979,
¨
1429.
12. For the synthesis of racemic 2-benzylcyclobutanone: see
Ref. 7b and (a) Bekolo, H.; Howell, A. R. New. J. Chem.