ORGANIC
LETTERS
2011
Vol. 13, No. 16
4340–4343
Highly Efficient Synthesis of Phenols by
Copper-Catalyzed Hydroxylation of Aryl
Iodides, Bromides, and Chlorides
Kai Yang,†,§ Zheng Li, Zhaoyang Wang,§ Zhiyi Yao,‡ and Sheng Jiang*,†
Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health,
CAS, Guangzhou, 510530, P. R. China, Shanghai Institute of Technology, Shanghai,
210032, P. R. China, School of Chemistry and Environment, South China Normal
University, Guangzhou 510006, P. R. China, and The Methodist Hospital Research
Institute, Houston, Texas 77030, United States
Received June 22, 2011
ABSTRACT
8-Hydroxyquinolin-N-oxide was found to be a very efficient ligand for the copper-catalyzed hydroxylation of aryl iodides, aryl bromides, or aryl
chlorides under mild reaction conditions. This methodology provides a direct transformation of aryl halides to phenols and to alkyl aryl ethers. The
inexpensive catalytic system showed great functional group tolerance and excellent selectivity.
Phenols are very useful intermediates for constructing
pharmaceutical molecules, polymers, and natural com-
pounds.1 Traditional nonoxidative preparation of phenols
includes nucleophilic substitution of activated aryl halides,
copper-catalyzed transformation of diazoarenes, benzyne
protocols, and aromatic boronic acids all of which were
limited by harsh reaction conditions and the availability of
starting materials.2 While several iridium- or palladium-
catalyzed conversions of different aryl halides to phenols
have been reported in recent years,3,4 which involved the
use of rare and expensive metallic catalysts, and sophisti-
cated supporting ligands, only a few examples of the
copper-catalyzed hydroxylation of aryl iodides and elec-
tron-deficient aryl bromides were reported.5,6 Significant
limitations tothis processwere that aryl chlorides as well as
electron-rich aryl bromides did not react. To reduce costs,
† Guangzhou Institute of Biomedicine and Health.
‡ Shanghai Institute of Technology.
§ South China Normal University.
The Methodist Hospital Research Institute.
(1) (a) Rappoport, Z. The Chemistry of Phenols; Wiley-VCH:
Weinheim, 2003. (b) Tyman, J. H. P. Synthetic and Natural Phenols;
Elsevier: New York, 1996.
(2) For recent reviews on synthesis of phenols, see: (a) Hanson, P.;
Jones, J. R.; Taylor, A. B.; Walton, P. H.; Timms, A. W. J. Chem. Soc.,
Perkin Trans. 2 2002, 1135. (b) Hoarau, C.; Pettus, T. R. R. Synlett 2003,
127.
(3) Iridium-catalyzed formation of phenols: Maleczka, R. E.; Shi, F.;
Holmes, D.; Smith, M. R., III. J. Am. Chem. Soc. 2003, 125, 7792.
(4) Palladium-catalyzed formation of phenols: (a) Anderson, K. W.;
Ikawa, T.; Tundel, R. E.; Buchwald, S. L. J. Am. Chem. Soc. 2006, 128,
10694. (b) Willis, M. C. Angew. Chem., Int. Ed. 2007, 46, 3402. (c) Chen,
G.; Chan, A. S. C.; Kwong, F. Y. Tetrahedron Lett. 2007, 48, 473.
(d) Gallon, B. J.; Kojima, R. W.; Kaner, R. B.; Diaconescu, P. L. Angew.
(5) Copper-catalyzed formation of phenols: (a) Tilli, A.; Xia, N.;
Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48, 8725–8728.
(b) Zhao, D.; Wu, N.; Zhang, S.; Xi, P.; Su, X.; Lan, J.; You, J. Angew.
Chem., Int. Ed. 2009, 48, 8729–8732. (c) Xu, H.-J.; Liang, Y.-F.; Cai,
Z.-Y.; Qi, H.-X.; Yang, C.-Y.; Feng, Y.-S. J. Org. Chem. 2011, 76,
2296–2300. (d) Maurer, S.; Liu, W.; Zhang, X.; Jiang, Y.; Ma, D. Synlett
2010, 976. (e) Yang, D.; Fu, H. Chem.;Eur. J. 2010, 16, 2366. (f) Jing, L.;
Wei, J.; Zhou, L.; Huang, Z.; Li, Z.; Zhou, X. Chem. Commun. 2010, 4767.
(6) Formation of phenols from arylboronic acids: Xu, J.; Wang, X.;
Shao, C.; Su, D.; Cheng, G.; Hu, Y. Org. Lett. 2010, 9, 1964–1967.
€
Chem., Int. Ed. 2007, 46, 7251. (e) Schulz, T.; Torborg, C.; Schaffner, B.;
€
Huang, J.; Zapf, A.; Kadyrov, R.; Borner, A.; Beller, M. Angew. Chem.,
Int. Ed. 2009, 48, 918. (f) Sergeev, A. G.; Schulz, T.; Torborg, C.;
Spannenberg, A.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2009,
48, 7595.
r
10.1021/ol2016737
Published on Web 07/25/2011
2011 American Chemical Society