Organic Letters
Letter
Weatherford, D. A. J. Chem. Soc., Chem. Commun. 1989, 883.
(f) Kayaki, Y.; Koda, T.; Ikariya, T. J. Org. Chem. 2004, 69, 2595.
(g) Tao, Y.; Wang, B.; Wang, B.; Qu, L.; Qu, J. Org. Lett. 2010, 12,
2726.
(7) Weikel, R. R.; Hallett, J. P.; Liotta, C. L.; Eckert, C. A. Ind. Eng.
Chem. Res. 2007, 46, 5252.
(8) Olmstead, W. N.; Bordwell, F. G. J. Org. Chem. 1980, 3299.
(9) Sakamoto, M.; Shimizu, I.; Yamamoto, A. Bull. Chem. Soc. Jpn.
1996, 69, 1065.
(10) The hydroxide produced would also be expected to equilibrate
with the bicarbonate to generate carbonate. (a) Alberty, R. A. J. Phys.
Chem. 1995, 99, 11028. (b) Adamczyk, K.; Schwarz-Premont, M.;
Pines, D.; Pines, E.; Nibbering, E. T. J. Science 2009, 1690.
(11) Allen, C. F. H.; Bell, A.; Gates, J. W., Jr. J. Org. Chem. 1943, 373.
(12) Rao, J. S.; Basavaiah, D. Tetrahedron Lett. 2004, 1621.
(13) Heinzelman, R. V.; Anthony, W. C.; Lyttle, D. A.; Szmuszkovicz,
J. J. Org. Chem. 1960, 1548.
Ultimately, the combination of palladium catalysis with CO2
activation allows the substitution of allylic alcohols by
nitroalkanes, nitriles, and aldehydes and produces water as
the only byproduct.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures, 1H, 13C, 19F NMR spectra, and
characterization data of all novel products. This material is
AUTHOR INFORMATION
Corresponding Author
■
(14) Matthews, W. S.; Bares, J. E.; Bartmess, J. E.; Bordwell, F. G.;
Cornforth, F. J.; Drucker, G. E.; Margolin, Z.; McCallum, R. J.;
McCollum, G. J.; Vanier, N. R. J. Am. Chem. Soc. 1975, 7006.
(15) This is an estimate based on the pKa’s of PhCH2CN (21.9),
PhCH(Me)CN (23.0), and p-MeOC6H4CH2CN (23.8). (a) Bordwell,
F. G.; Cheng, J. P.; Bausch, M. J.; Bares, J. E. J. Phys. Org. Chem. 1988,
1, 209. (b) Bordwell, F. G.; Bares, J. E.; Bartmess, J. E.; McCollum, G.
J.; Van der Puy, M.; Vanier, N. R.; Matthews, W. S. J. Org. Chem. 1977,
42, 321.
(16) For other various strategies utilizing an allyl alcohol, see refs 5c ,
5e , 5f, and (a) Usui, I.; Schmidt, S.; Breit, B. Org. Lett. 2009, 1453.
(b) Jiang, G.; List, B. Angew. Chem., Int. Ed. 2011, 9471. (c) Krautwald,
S.; Schaforth, M. A.; Carreira, E. M. J. Am. Chem. Soc. 2014, 3020.
(17) (a) Recio, A., III; Tunge, J. A. Org. Lett. 2009, 11, 5630.
(b) Waetzig, S. R.; Tunge, J. A. J. Am. Chem. Soc. 2007, 129, 4138.
(c) Grenning, A. J.; Tunge, J. A. J. Am. Chem. Soc. 2011, 133, 14785.
(18) Kazmaier, U.; Pohlman, M. Synlett 2004, 623.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the National Science Foundation (CHE-1058855),
the KU Center for Environmentally Beneficial Catalysis, and
the Kansas Bioscience Authority Rising star program for
financial support. We thank Dr. Victor Day molecular
structures group, University of Kansas for X-ray crystallographic
analysis using a diffractometer purchased with NSF-MRI Grant
CHE-0923449. Support for the NMR instrumentation was
provided by NSF Academic Research Infrastructure Grant No.
9512331, NIH Shared Instrumentation Grant No.
S10RR024664, and NSF Major Research Instrumentation
Grant No. 0320648.
(19) (a) Kazmaier, U.; Zumpe, F. L. Angew. Chem., Int. Ed. 2000, 39,
802. (b) Consiglio, G.; Waymouth, R. M. Chem. Rev. 1989, 89, 257.
REFERENCES
(1) Godula, K.; Sames, D. Science 2006, 312, 67.
(2) Blanksby, S. J.; Ellsion, G. B. Acc. Chem. Res. 2003, 36, 255.
(3) Chuit, C.; Felkin, H.; Frajerman, C.; Roussi, G.; Swierczewski, G.
Chem. Commun. 1968, 1604.
■
(4) (a) Itoh, K.; Hamaguchi, N.; Miura, M.; Nomura, M. J. Chem.
́
́ ̂
́
Soc., Perkin Trans. 1 1992, 2833. (b) Stary, I.; Stara, I. G.; Kocovsky, P.
Tetrahedron Lett. 1993, 34, 179. (c) Masuyama, Y.; Kagawa, M.;
Kurusu, Y. Chem. Lett. 1995, 1121. (d) Satoh, T.; Ikeda, M.; Miura,
M.; Nomura, M. J. Org. Chem. 1997, 62, 4877. (e) Yang, S.-C.; Hung,
C.-W. J. Org. Chem. 1999, 64, 5000. (f) Tomaru, Y.; Horino, Y.; Araki,
M.; Tanaka, S.; Kimura, M. Tetrahedron Lett. 2000, 41, 5705.
(g) Kimura, M.; Horino, Y.; Mukai, R.; Tanaka, C.; Tamaru, Y. J. Am.
Chem. Soc. 2001, 123, 10401. (h) Tamaru, Y. Eur. J. Org. Chem. 2005,
2647. (i) Trost, B. M.; Quancard, J. J. Am. Chem. Soc. 2006, 128, 6314.
(j) Yamashita, Y.; Gopalarathnam, A.; Hartwig, J. F. J. Am. Chem. Soc.
2007, 129, 7508. (k) Takahashi, M.; McLaughlin, M.; Micalizio, G. C.
Angew. Chem., Int. Ed. 2009, 48, 3648. (l) Matsubara, R.; Masuda, K.;
Nakano, J.; Kobayashi, S. Chemm. Commun. 2010, 46, 8662. (m) Yang,
H.; Fang, L.; Zhang, M.; Zhu, C. Eur. J. Org. Chem. 2009, 666.
(5) (a) Manabe, K.; Kobayashi, S. Org. Lett. 2003, 5, 3241.
(b) Kinoshita, H.; Shinokubo, H.; Oshima, K. Org. Lett. 2004, 6, 4085.
(c) Usui, I.; Schmidt, S.; Keller, M.; Breit, B. Org. Lett. 2008, 10, 1207.
(d) Mukherjee, S.; List, B. J. Am. Chem. Soc. 2007, 129, 11336.
(e) Jiang, G.; List, B. Adv. Synth. Catal. 2011, 353, 1667. (f) Krautwald,
S.; Sarlah, D.; Schafroth, M.; Carreira, E. M. Science 2013, 340, 1065.
(g) Rueping, M.; Uria, U.; Lin, M.-Y.; Atodiresei, I. J. Am. Chem. Soc.
2011, 133, 3732.
(6) (a) Sundararaju, B.; Achard, M.; Bruneau, C. Chem. Soc. Rev.
2012, 41, 4467. (b) Atkins, K. E.; Walker, W. E.; Manyik, R. M.
Tetrahedron Lett. 1970, 3821. (c) Haudegond, J.-P.; Chauvin, Y.;
Commereuc, D. J. Org. Chem. 1979, 44, 3063. (d) Ozawa, F.;
Okamoto, H.; Kawagishi, S.; Yamamoto, S.; Minami, T.; Yoshifuji, M.
J. Am. Chem. Soc. 2002, 124, 10968. (e) Bergbreiter, D. E.;
D
dx.doi.org/10.1021/ol502023d | Org. Lett. XXXX, XXX, XXX−XXX