Organic Letters
Letter
(10) (a) Adam, W.; Hadjiarapoglou, L.; Peters, K.; Sauter, M. J. Am.
Chem. Soc. 1993, 115, 8603−8608. (b) Adam, W.; Peters, K.; Sauter,
M. Synthesis 1994, 1994, 111−119. (c) Adam, W.; Sauter, M.
Tetrahedron 1994, 50, 11441−11446.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
(11) For recent reviews on phenol dearomatization cascades in
■
́
complex syntheses, see: (b) Quideau, S.; Pouysegu, L.; Deffieux, D.
This work was supported by the DBT (grant BT/PR7442/
MED/29/680/2012) and CSIR (under 12th FYP, CSC0108).
We thank R. G. Gonnade for crystal X-ray diffraction data.
A.A.M. thanks UGC for a fellowship.
Synlett 2008, 2008, 467−495. (c) Roche, S. P.; Porco, J. A. Angew.
Chem., Int. Ed. 2011, 50, 4068−4093. (d) Zhuo, C.-X.; Zhang, W.;
You, S.-L. Angew. Chem., Int. Ed. 2012, 51, 12662−12686. (e) Ding,
Q.; Ye, Y.; Fan, R. Synthesis 2013, 45, 1−16.
(12) Ionita, M.; Roger, J.; Doucet, H. ChemSusChem 2010, 3, 367−
376.
(13) For selected reviews on Oxone-mediated oxidations, see:
(a) Hussain, H.; Green, I. R.; Ahmed, I. Chem. Rev. 2013, 113, 3329−
3371. (b) Adam, W.; Zhao, C.-G.; Jakka, K. Organic Reactions; John
Wiley & Sons, Inc., 2004.
(14) (a) Murray, R. W.; Jeyaraman, R. J. Org. Chem. 1985, 50, 2847−
2853. (b) Phatake, R. S.; Ramana, C. V. Tetrahedron Lett. 2015, 56,
2183−2186.
(15) Wang, Z.; Sun, J. Synthesis 2015, 47, 3629−3644.
(16) Electron-deficient olefins are rarely employed as dienophiles in
o-QM [4 + 2]-cycloaddition reactions: Wojciechowski, K.;
Dolatowska, K. Tetrahedron 2005, 61, 8419−8422.
(17) (a) Ward, R. S. Nat. Prod. Rep. 1999, 16, 75−96. (b) Gordaliza,
M.; García, P. A.; Miguel del Corral, J. M.; Castro, M. A.; Gomez-
́
Zurita, M. A. Toxicon 2004, 44, 441−459. (c) Qian Liu, Y.; Yang, L.;
Tian, X. Curr. Bioact. Compd. 2007, 3, 37−66. (d) Wu, Y.; Zhao, J.;
Chen, J.; Pan, C.; Li, L.; Zhang, H. Org. Lett. 2009, 11, 597−600.
(18) Curci, R.; Fiorentino, M.; Troisi, L.; Edwards, J. O.; Pater, R. H.
J. Org. Chem. 1980, 45, 4758−4760.
(19) Aromatic aldehydes can be converted into their corresponding
acids/phenols when treated with Oxone in aqueous acetone; see:
Webb, K. S.; Ruszkay, S. J. Tetrahedron 1998, 54, 401−410.
REFERENCES
■
(1) Singh, S. B.; Zink, D. L.; Quamina, D. S.; Pelaez, F.; Teran, A.;
Felock, P.; Hazuda, D. J. Tetrahedron Lett. 2002, 43, 2351−2354.
(2) Foot, J. S.; Giblin, G. M. P.; Taylor, R. J. K. Org. Lett. 2003, 5,
4441−4444.
(3) Ramana, C. V.; Nageswara Reddy, C.; Gonnade, R. G. Chem.
Commun. 2008, 3151−3153.
(4) Tadross, P. M.; Bugga, P.; Stoltz, B. M. Org. Biomol. Chem. 2011,
9, 5354−5357.
(5) Talontsi, F. M.; Dittrich, B.; Schuffler, A.; Sun, H.; Laatsch, H.
̈
Eur. J. Org. Chem. 2013, 2013, 3174−3180.
(6) El Amrani, M.; Lai, D.; Debbab, A.; Aly, A. H.; Siems, K.; Seidel,
C.; Schnekenburger, M.; Gaigneaux, A.; Diederich, M.; Feger, D.; Lin,
W.; Proksch, P. J. Nat. Prod. 2014, 77, 49−56.
(7) In some instances, despite the presence of o-QM being
unintentional, the possibility of a [4 + 2]-cycloaddition of o-QMs
with a carbonyl group has been noticed and/or proposed to account
for the minor side products isolated. See: (a) Jones, D. W. J. Chem. Soc.
D 1971, 1130−1131. (b) Castonguay, A.; Brassard, P. Can. J. Chem.
1977, 55, 1324−1332.
(8) For recent reviews on o-QM synthesis and utility, see: (a) Van De
Water, R. W.; Pettus, T. R. R. Tetrahedron 2002, 58, 5367−5405.
(b) Jackson, S. K.; Wu, K.-L.; Pettus, T. R. R. Sequential Reactions
Initiated by Oxidative Dearomatization. Biomimicry or Artifact? In
Biomimetic Organic Synthesis; Nay, B., Poupon, E., Eds.; VCH:
Weinheim, 2011; Vol. 2, pp 723−749. (c) Pathak, T. P.; Sigman, M.
S. J. Org. Chem. 2011, 76, 9210−9215. (d) Willis, N. J.; Bray, C. D.
Chem. - Eur. J. 2012, 18, 9160−9173. (e) Bai, W.-J.; David, J. G.; Feng,
Z.-G.; Weaver, M. G.; Wu, K.-L.; Pettus, T. R. R. Acc. Chem. Res. 2014,
47, 3655−3664. (f) Singh, M. S.; Nagaraju, A.; Anand, N.; Chowdhury,
S. RSC Adv. 2014, 4, 55924−55959.
(9) For selected recent total syntheses employing o-QM synthons,
see: (a) Takao, K.-i.; Noguchi, S.; Sakamoto, S.; Kimura, M.; Yoshida,
K.; Tadano, K.-i. J. Am. Chem. Soc. 2015, 137, 15971−15977.
(b) Gervais, A.; Lazarski, K. E.; Porco, J. A. J. Org. Chem. 2015, 80,
9584−9591. (c) Zhao, N.; Ren, X.; Ren, J.; Lu, H.; Ma, S.; Gao, R.; Li,
̈
Y.; Xu, S.; Li, L.; Yu, S. Org. Lett. 2015, 17, 3118−3121. (d) Spence, J.
T. J.; George, J. H. Org. Lett. 2015, 17, 5970−5973. (e) Markwell-
Heys, A. W.; Kuan, K. K. W.; George, J. H. Org. Lett. 2015, 17, 4228−
4231. (f) Song, L.; Yao, H.; Tong, R. Org. Lett. 2014, 16, 3740−3743.
(g) Jepsen, T. H.; Thomas, S. B.; Lin, Y.; Stathakis, C. I.; de Miguel, I.;
Snyder, S. A. Angew. Chem., Int. Ed. 2014, 53, 6747−6751. (h) Spence,
J. T. J.; George, J. H. Org. Lett. 2013, 15, 3891−3893. (i) Li, L.; Liu, Y.;
Wang, Q. Eur. J. Org. Chem. 2013, 2013, 8014−8021. (j) Pepper, H.
P.; Kuan, K. K. W.; George, J. H. Org. Lett. 2012, 14, 1524−1527.
(k) Liao, D.; Li, H.; Lei, X. Org. Lett. 2012, 14, 18−21. (l) Green, J. C.;
Burnett, G. L.; Pettus, T. R. R. Pure Appl. Chem. 2012, 84, 1621−1631.
(m) Bai, W.-J.; Green, J. C.; Pettus, T. R. R. J. Org. Chem. 2012, 77,
379−387. (n) Wenderski, T. A.; Marsini, M. A.; Pettus, T. R. R. Org.
Lett. 2011, 13, 118−121. (o) Spence, J. T. J.; George, J. H. Org. Lett.
2011, 13, 5318−5321. (p) Kuttruff, C. A.; Zipse, H.; Trauner, D.
Angew. Chem., Int. Ed. 2011, 50, 1402−1405. (q) Green, J. C.;
́
Jimenez-Alonso, S.; Brown, E. R.; Pettus, T. R. R. Org. Lett. 2011, 13,
5500−5503. (r) Snaddon, T. N.; Buchgraber, P.; Schulthoff, S.; Wirtz,
C.; Mynott, R.; Furstner, A. Chem. - Eur. J. 2010, 16, 12133−12140.
̈
(s) Lawrence, A. L.; Adlington, R. M.; Baldwin, J. E.; Lee, V.; Kershaw,
J. A.; Thompson, A. L. Org. Lett. 2010, 12, 1676−1679. (t) George, J.
H.; Baldwin, J. E.; Adlington, R. M. Org. Lett. 2010, 12, 2394−2397.
D
Org. Lett. XXXX, XXX, XXX−XXX