Journal of the American Chemical Society
COMMUNICATION
and directed fragment coupling draws on the versatility of
diazene chemistry7,21 and holds great potential for complex
molecule assembly.
J. Am. Chem. Soc. 1978, 100, 920. (i) Baldwin, J. E.; Adlington, R. M.;
Bottaro, J. C.; Kolhe, J. N.; Newington, I. M.; Perry, M. W. D. Tetra-
hedron 1986, 42, 4235. (j) Sumiyoshi, T.; Kamachi, M.; Kuwae, Y.;
Schnabel, W. Bull. Chem. Soc. Jpn. 1987, 60, 77. (k) Neuman, R. C., Jr.;
Grow, R. H.; Binegar, G. A.; Gunderson, H. J. J. Org. Chem. 1990,
55, 2682. (l) Engel, P. S.; Pan, L.; Ying, Y.; Alemany, L. B. J. Am. Chem.
Soc. 2001, 123, 3706. (m) Hoijemberg, P. A.; Karlen, S. D.; Snaramꢀe,
C. N.; Aramendía, P. F.; García-Garibay, M. A. Photochem. Photobiol. Sci.
2009, 8, 961. For relevant reviews, see: (n) Engel, P. S.; Steel, C. Acc.
Chem. Res. 1973, 6, 275. (o) Engel, P. S. Chem. Rev. 1980, 80, 99.
(8) We also explored the use of diacyl peroxides and diacyl diazenes:
(a) Bartlett, P. D.; Leffler, J. E. J. Am. Chem. Soc. 1950, 72, 3030.
(b) Leffler, J. E.; Bond, W. B. J. Am. Chem. Soc. 1956, 78, 335.
(c) Cramer, R. J. Am. Chem. Soc. 1957, 79, 6215. (d) Mackay, D.; Marx,
U. F.; Waters, W. A. J. Chem. Soc. 1964, 4793. (e) Feldhues, M.; Sch€afer,
H. J. Tetrahedron 1985, 41, 4213. (f) Spanttulescu, M. D.; Jain, R. P.;
Derksen, D. J.; Vederas, J. C. Org. Lett. 2003, 5, 2963.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures, spectros-
b
copic data, and related mechanistic studies. This material is
’ AUTHOR INFORMATION
Corresponding Author
(9) (a) Nodelman, N.; Martin, J. C. J. Am. Chem. Soc. 1976, 98, 6597.
(b) Braden, D. A.; Parrack, E. E.; Tyler, D. R. Coordin. Chem. Rev. 2001,
211, 279.
(10) We also examined the oxidation of dialkyl ureas. For pioneering
work on diaziridinones, see: (a) Greene, F. D.; Stowell, J. C. J. Am. Chem.
Soc. 1964, 86, 3569. (b) Greene, F. D.; Stowell, J. C.; Bergmark, W. R.
J. Org. Chem. 1969, 34, 2254.
’ ACKNOWLEDGMENT
We acknowledge financial support by NIH-NIGMS (GM089732),
Amgen, and DuPont. M.M. is a Camille Dreyfus Teacher-Scholar.
O.K.A. acknowledges an Amgen summer graduate fellowship. We
thank Mr. Justin Kim, Dr. Nicolas Boyer, and Dr. Michael A. Schmidt
for helpful discussions.
(11) (a) Audrieth, L. F.; Sveda, M. J. Org. Chem. 1944, 9, 89. (b)
Hansen, N. C. Acta Chem. Scand. 1963, 17, 2141. (c) Weiss, G.; Schulze,
G. Liebigs Ann. Chem. 1969, 729, 40. (d) Kloek, J. A.; Leschinsky, K. L.
J. Org. Chem. 1976, 41, 4028. (e) Timberlake, J. W.; Ray, W. J., Jr.;
Stevens, E. D.; Cheryl, K. L. J. Org. Chem. 1989, 54, 5824.
(12) (a) Ohme, R.; Schmitz, E. Angew. Chem., Int. Ed. 1965, 4, 433.
(b) Golzke, F.; Oberlinner, G. A.; R€uchardt, C. Nouv. J. Chim. 1977,
1, 169. (c) Chang, H.-H.; Weinstein, B. J. Chem. Soc., Perkin Trans. 1
1977, 1601. (d) Ikeda, H.; Hoshi, Y.; Namai, H.; Tanaka, F.; Goodman,
J. L.; Mizuno, K. Chem.—Eur. J. 2007, 13, 9207.
’ REFERENCES
(1) (a) Cordell, G. A.; Saxton, J. E. In The Alkaloids: Chemistry and
Physiology; Manske, R. H. F., Rodrigo, R. G. A., Eds.; Academic Press:
New York, 1981; Vol. 20, pp 3ꢀ294. (b) Hino, T.; Nakagawa, M. In The
Alkaloids: Chemistry and Pharmacology; Brossi, A., Ed.; Academic Press:
New York, 1989; Vol. 34, pp 1ꢀ75. (c) Crich, D.; Banerjee, A. Acc.
Chem. Res. 2007, 40, 151. (d) Steven, A.; Overman, L. E. Angew. Chem.,
Int. Ed. 2007, 46, 5488.
(2) (a) Movassaghi, M.; Schmidt, M. A. Angew. Chem., Int. Ed. 2007,
46, 3725. (b) Movassaghi, M.; Schmidt, M. A.; Ashenhurst, J. A. Angew.
Chem., Int. Ed. 2008, 47, 1485. (c) Kim, J.; Ashenhurst, J. A.; Movassaghi,
M. Science 2009, 324, 238. (d) Kim, J.; Movassaghi, M. J. Am. Chem. Soc.
2010, 132, 14376.
(13) For base-promoted introduction of azide and p-MeC6H4 at C3a
of a related cyclotryptophan, see: Espejo, V. R.; Li, X.-B.; Rainier, J. D.
J. Am. Chem. Soc. 2010, 132, 8282.
(14) For a recent synthesis of C3a-amino cyclotryptamines, see:
Benkovics, T.;Guzei, I. A.;Yoon, T. P.Angew. Chem., Int. Ed. 2010, 49, 9153.
(15) Application of previously reported conditions was found to
suffer from incomplete conversion or low yield of the diazene.
(16) Key spectroscopic data for representative diazenes: R,R0-azo-
cumene, λmax = 367 nm,7b 13C NMR (CDCl3) δ 71.32 (R-carbon);12d
trans-N,N0-di(1-adamantyl)diazene, λmax(octane) = 368 nm.7k
(17) Photoexcitation at 23 °C was found to be superior to thermal
diazene fragmentation for our substrates. For example, diazene (+)-5a
was stable at 120 °C in DMSO-d6 but resulted in unproductive
decomposition at 150 °C.
(18) (a) Hart, N. K.; Johns, S. R.; Lamberton, J. A.; Summons, R. E.
J. Aust. Chem. 1974, 27, 639. (b) Libot, F.; Miet, C.; Kunesch, N;
Poisson, J. E.; Pusset, J.; Sꢀevenet, T. J. Nat. Prod. 1987, 50, 468.
(c) Verotta, L.; Pilati, T.; Tatø, M.; Eilsabetsky, E.; Amador, T. A.;
Nunes, D. S. J. Nat. Prod. 1998, 61, 392. (d) Jannic, V.; Guꢀeritte, F.;
Laprꢀevote, O.; Serani, L.; Martin, M.-T.; Sꢀevenet, T.; Potier, P. J. Nat.
Prod. 1999, 62, 838.
(19) Diazene 5h was found to undergo facile trans-to-cis isomeriza-
tion in solution (CD3CN) upon exposure to ambient light.
(20) For an elegant example of desymmetrization chemistry in a
related system, see: Kodanko, J. J.; Overman, L. E. Angew. Chem., Int. Ed.
2003, 42, 2528. Also see refs 2b, 5a, and 5d.
(21) For representative examples of intramolecular carbonꢀcarbon
bond formation using dialkyl diazene intermediates in natural product
synthesis, see: (a) Little, R. D.; Carroll, G. L.; Pettersen, J. L. J. Am. Chem.
Soc. 1983, 105, 928. (b) Little, R. D. Chem. Rev. 1996, 96, 93.
(c) Mascitti, V.; Corey, E. J. J. Am. Chem. Soc. 2004, 126, 15664.
(d) Wender, P. A.; Kee, J.-M.; Warrington, J. M. Science 2008, 320, 649.
(3) For inventive total syntheses of natural products employing a key
carbon(3a)ꢀnitrogen bond construction, see: (a) Newhouse, T.; Baran,
P. S. J. Am. Chem. Soc. 2008, 130, 10886. (b) Newhouse, T.; Lewis, C. A.;
Eastman, K. J.; Baran, P. S. J. Am. Chem. Soc. 2010, 132, 7119. (c) Espejo,
V. R.; Rainier, J. D. Org. Lett. 2010, 12, 2154. (d) Pꢀerez-Balado, C.; de
ꢀ
Lera, A. R. Org. Biomol. Chem. 2010, 8, 5179.
(4) (a) Eccles, R. G. Proc. Am. Pharm. Assoc. 1888, 84, 382. (b) Anet,
E. F. L. J.; Hughes, G. K.; Ritchie, E. Aust. J. Chem. 1961, 14, 173.
(c) Barrow, C. J.; Sedlock, D. M. J. Nat. Prod. 1994, 57, 1239. (d)
Takahashi, C.; Minoura, K.; Takeshi, T.; Numata, A.; Kushida, K.;
Shingu, T.; Hagishita, S.; Nakai, H.; Sato, T.; Harada, H. Tetrahedron
1995, 51, 3483. (e) Varoglu, M.; Corbett, T. H.; Valeriote, F. A.; Crews,
P. J. Org. Chem. 1997, 62, 7078.
(5) For other recent applications, see: (a) Pꢀerez-Balado, C.; de Lera,
A. R. Org. Lett. 2008, 10, 3701. (b) Pꢀerez-Balado, C.; Rodríguez-Gra~na,
P.; de Lera, A. R. Chem.—Eur. J. 2009, 15, 9928. (c) Iwasa, E.;
Hamashima, Y.; Fujishiro, S.; Higuchi, E.; Ito, A.; Yoshida, M.; Sodeoka,
M. J. Am. Chem. Soc. 2010, 132, 4078. (d) Foo, K.; Newhouse, T.; Mori,
I.; Takayama, H.; Baran, P. S. Angew. Chem., Int. Ed. 2011, 50, 2716.
(6) See Supporting Information for details.
(7) (a) Horner, L.; Naumann, W. Liebigs Ann. Chem. 1954, 587, 93.
(b) Nelsen, S. F.; Bartlett, P. D. J. Am. Chem. Soc. 1966, 88, 137.
(c) Nelsen, S. F.; Bartlett, P. D. J. Am. Chem. Soc. 1966, 88, 143.
(d) Timberlake, J. W.; Alender, J.; Garner, A. W.; Hodges, M. L.;
€
Ozmeral, C.; Szilagyi, S. J. Org. Chem. 1981, 46, 2082. (e) Hossain, M. T.;
Timberlake, J. W. J. Org. Chem. 2001, 66, 6282. For other pioneering
work in the area of diazene chemistry, see: (f) Porter, N. A.; Marnett, L. J.
J. Am. Chem. Soc. 1972, 95, 4361. (g) G€olitz, P.; de Meijere, A. Angew.
Chem., Int. Ed. 1977, 16, 854. (h) Porter, N. A.; Dubay, G. R.; Green, J. G.
13005
dx.doi.org/10.1021/ja2057852 |J. Am. Chem. Soc. 2011, 133, 13002–13005