Full Paper
Hoshiya, T. Kobayashi, M. Arisawa, S. Shuto, Org. Lett. 2013, 15, 6202–
6205.
piperidines, see: A. Millet, P. Larini, E. Clot, O. Baudoin, Chem. Sci. 2013,
4, 2241–2247.
[32]
[33]
[34]
For alternative approaches to heterocycle arylation, not adjacent to the
heteroatom, see: a) G. A. Molander, K. M. Traister, B. T. O'Neill, J. Org.
Chem. 2014, 79, 5771–5780; b) D. M. Allwood, D. C. Blakemore, A. D.
Brown, S. V. Ley, J. Org. Chem. 2014, 79, 328–338.
For isolated examples of C–F bond formation by C–H functionalization
of piperidines, see: a) J. Miao, K. Yang, M. Kurek, H. Ge, Org. Lett. 2015,
17, 3738–3741; b) Q. Zhu, D. Ji, T. Liang, X. Wang, Y. Xu, Org. Lett. 2015,
17, 3798–3801.
J. He, M. Wasa, K. S. L. Chan, J.-Q. Yu, J. Am. Chem. Soc. 2013, 135, 3387–
3390.
D. P. Affron, O. A. Davis, J. A. Bull, Org. Lett. 2014, 16, 4956–4959.
Also see: R. Feng, B. Wang, Y. Liu, Z. Liu, Y. Zhang, Eur. J. Org. Chem. 2015,
142–151.
R. Parella, S. A. Babu, J. Org. Chem. 2015, 80, 2339–2355.
Choices of conditions for this study were made based on analysis of
commonly successful conditions in the literature. Various Pd sources
have been used, but typically with acetate ligands, which is consistent
with the mechanistic proposals. Toluene and alcohol solvents are most
widely used, along with DCE which is less attractive. There appeared
to be little link between the combination of base and solvent used.
Concentration has been an extremely important variable in some instan-
ces, and solvent-free conditions can be extremely valuable, particularly
when AgOAc is used as base. The first round assesses the Pd source
[Pd(OAc)2, Pd(TFA)2] and solvent (toluene, tert-amyl-OH, no solvent), us-
ing AgOAc. Progressing the best conditions, the second round evaluates
the base: AgOAc, Ag2CO3, Ag2CO3/PivOH, K2CO3/PivOH and CsOAc. Vari-
ous concentrations were then investigated in the third round. The order
of optimization was chosen to examine the most pertinent variables
first.
[19]
[20]
a) W. R. Gutekunst, P. S. Baran, J. Am. Chem. Soc. 2011, 133, 19076–19079;
b) W. R. Gutekunst, R. G. Gianatassio, P. S. Baran, Angew. Chem. Int. Ed.
2012, 51, 7507–7510; Angew. Chem. 2012, 124, 7625; c) R. Parella, B.
Gopalakrishnan, S. A. Babu, J. Org. Chem. 2013, 78, 11911–11934.
a) L. D. Tran, O. Daugulis, Angew. Chem. Int. Ed. 2012, 51, 5188–5191;
Angew. Chem. 2012, 124, 5278; b) J. He, S. Li, Y. Deng, H. Fu, B. N. Lafor-
teza, J. E. Spangler, A. Homs, J.-Q. Yu, Science 2014, 343, 1216–1220; c)
W. Gong, G. Zhang, T. Liu, R. Giri, J.-Q. Yu, J. Am. Chem. Soc. 2014, 136,
16940–16946; d) B. V. S. Reddy, L. R. Reddy, E. J. Corey, Org. Lett. 2006,
8, 3391–3394; e) B. Wang, W. A. Nack, G. He, S.-Y. Zhang, G. Chen, Chem.
Sci. 2014, 5, 3952–3957.
N-Linked groups have been developed for directed γ-arylation of C(sp3)–
H bonds; Ma introduced the 2-methoxyiminoacetyl (MIA) auxiliary, see:
a) M. Fan, D. Ma, Angew. Chem. Int. Ed. 2013, 52, 12152–12155; Angew.
Chem. 2013, 125, 12374. The N-(2-pyridyl)sulfonyl group was reported
by Carretero, see: b) N. Rodríguez, J. A. Romero-Revilla, M. Á. Fernández-
Ibáñez, J. C. Carretero, Chem. Sci. 2013, 4, 175–179.
[35]
[36]
[21]
[22]
[37]
[38]
K. S. L. Chan, M. Wasa, L. Chu, B. N. Laforteza, M. Miura, J.-Q. Yu, Nature
Chem. 2014, 6, 146–150.
A. F. M. Noisier, M. A. Brimble, Chem. Rev. 2014, 114, 8775–8806.
[23]
[24]
a) M. Lafrance, C. N. Rowley, T. K. Woo, K. Fagnou, J. Am. Chem. Soc.
2006, 128, 8754–8756; b) M. Lafrance, K. Fagnou, J. Am. Chem. Soc. 2006,
128, 16496–16497; c) L. Ackermann, Chem. Rev. 2011, 111, 1315–1345;
d) D. García-Cuadrado, A. A. C. Braga, F. Maseras, A. M. Echavarren, J. Am.
Chem. Soc. 2006, 128, 1066–1067; e) Y. Dang, S. Qu, J. W. Nelson, H. D.
Pham, Z.-X. Wang, X. Wang, J. Am. Chem. Soc. 2015, 137, 2006–2014.
For a recent computational study comparing features of different direct-
ing groups, see: H. Tang, X.-R. Huang, J. Yao, H. Chen, J. Org. Chem. 2015,
80, 4672–4682.
[25]
[39]
See supporting information for further details of optimization on THF
carboxamide 1 (extended optimization process). There was no advan-
tage of using alternative concentrations, additives or bases, with toluene
or tert-amyl-OH as solvent, providing confidence in this approach.
Babu and co-workers reported the following conditions: 4 equiv. ArI,
[26]
[27]
Y. Wei, H. Tang, X. Cong, B. Rao, C. Wu, X. Zeng, Org. Lett. 2014, 16, 2248–
2251.
For selected examples, see: a) S.-Y. Zhang, Q. Li, G. He, W. A. Nack, G.
Chen, J. Am. Chem. Soc. 2013, 135, 12135–12141; b) S.-Y. Zhang, G. He,
W. A. Nack, Y. Zhao, Q. Li, G. Chen, J. Am. Chem. Soc. 2013, 135, 2124–
2127; c) K. Chen, F. Hu, S.-Q. Zhang, B.-F. Shi, Chem. Sci. 2013, 4, 3906–
3911.
[40]
[41]
10 mol-% Pd(OAc)2, 2.2 equiv. AgOAc, toluene (0.08
the amide), 36 h, 110 °C; see ref. 37.
M with respect to
The stereochemical outcome was assigned on the basis of 1H NMR cou-
pling constants. For the (i) cis-configured THF acid 4: δ = 4.65 (d, J =
7.6 Hz, 1 H, HCC=O); and (ii) trans-configured THF acid 3: δ = 4.56 (d,
J = 6.0 Hz, 1 H, HCC=O). See reference 37 for crystal structures and J
values for compounds 2a and 4 indicating stereochemistry.
[28]
a) Y. Aihara, N. Chatani, J. Am. Chem. Soc. 2014, 136, 898–901; b) M. Li,
J. Dong, X. Huang, K. Li, Q. Wu, F. Song, J. You, Chem. Commun. 2014,
50, 3944–3946; c) X. Wu, Y. Zhao, H. Ge, J. Am. Chem. Soc. 2014, 136,
1789–1792; d) M. Iyanaga, Y. Aihara, N. Chatani, J. Org. Chem. 2014, 79,
11933–11939.
The stereochemical outcome was assigned on the basis of 1H NMR cou-
pling constants. For example, the cis-configured N-Boc-3-phenylpyrrol-
idinecarboxamide 6a gave the following signal for the C(2)-H: δ = 4.77
(d, J = 8.5 Hz, 1 H, HCC=O). For representative values for cis (J = 8.1–
8.5 Hz) and trans (J = 4.0–6.3 Hz) coupling constants of related cis and
trans-configured N-acetyl-3-phenylproline and derivatives, see: J. Y. L.
Chung, J. T. Wasicak, W. A. Arnold, C. S. May, A. M. Nadzen, M. W. Holla-
day, J. Org. Chem. 1990, 55, 270.
The stereochemical outcome was assigned on the basis of 1H NMR cou-
pling constants and NOE studies. For the piperidine substrates, the best
comparison was achieved on deprotection to the N-H derivative 11. The
observed signal for 11 C(2)-H: δ = 3.98 (d, J = 4.2 Hz, 1 H, HCC=O). This
contrasts with known trans-3-phenylpipecolinic acid derivatives which
display coupling constants of 10.2–10.5 Hz. Related, 2,3-disubstituted N-
PMP and N–H derivatives displayed characteristic cis (3.7–5.0 Hz) and
trans (9.5 Hz) coupling constants. See the supporting information of: R.
He, X. Jin, H. Chen, Z.-T. Huang, Q.-Y. Zheng, C. Wang, J. Am. Chem. Soc.
2013, 136, 6558–6561. Additionally, NOE experiments were performed
on compound 10b that indicated cis-stereochemistry. See the Support-
ing Information for further details.
[42]
[43]
[29]
[30]
a) R. Shang, L. Ilies, A. Matsumoto, E. Nakamura, J. Am. Chem. Soc. 2013,
135, 6030–6032; b) Q. Gu, H. H. Al Mamari, K. Graczyk, E. Diers, L. Acker-
mann, Angew. Chem. Int. Ed. 2014, 53, 3868–3871; Angew. Chem. 2014,
126, 3949.
For selected approaches to the catalytic α-C–H arylation of saturated
heterocycles, see: a) Z. Zuo, D. W. C. MacMillan, J. Am. Chem. Soc. 2014,
136, 5257–5260; b) Z. Zuo, D. T. Ahneman, L. Chu, J. A. Terrett, A. G.
Doyle, D. W. C. MacMillan, Science 2014, 345, 437–440; c) J. Jin, D. W. C.
MacMillan, Angew. Chem. Int. Ed. 2015, 54, 1565–1569; Angew. Chem.
2015, 127, 1585; d) H. M. L. Davies, T. Hansen, M. R. Churchill, J. Am.
Chem. Soc. 2000, 122, 3063–3070; e) S. J. Pastine, D. V. Gribkov, D. Sames,
J. Am. Chem. Soc. 2006, 128, 14220–14221; f) N. Yoshikai, A. Mieczkowski,
A. Matsumoto, L. Ilies, E. Nakamura, J. Am. Chem. Soc. 2010, 132, 5568–
5569; g) A. McNally, C. K. Prier, D. W. C. MacMillan, Science 2011, 334,
1114–1117; h) A. Peschiulli, V. Smout, T. E. Storr, E. A. Mitchell, Z. Eliáš,
W. Herrebout, D. Berthelot, L. Meerpoel, B. U. W. Maes, Chem. Eur. J. 2013,
19, 10378–10387; i) D. Liu, C. Liu, H. Li, A. Lei, Angew. Chem. Int. Ed. 2013,
52, 4453–4456; Angew. Chem. 2013, 125, 4549. Also see: j) C. J. Cordier,
R. J. Lundgren, G. C. Fu, J. Am. Chem. Soc. 2013, 135, 10946–10949; k)
K. R. Campos, A. Klapars, J. H. Waldman, P. G. Dormer, C. Chen, J. Am.
Chem. Soc. 2006, 128, 3538–3539; l) S. Seel, T. Thaler, K. Takatsu, C.
Zhang, H. Zipse, B. F. Straub, P. Mayer, P. Knochel, J. Am. Chem. Soc. 2011,
133, 4774–4777.
[44]
For trans-3-phenylpipecolinic acid derivatives, related biological activity,
as well as the corresponding relevant coupling constants for stereo-
chemical assignment, see: a) D. G. Liu, Y. Gao, X. Wang, J. A. Kelley, T. R.
Burke, J. Org. Chem. 2002, 67, 1448–1452; b) D. G. Liu, X. Z. Wang, Y.
Gao, B. Li, D. Yang, T. R. Burke, Tetrahedron 2002, 58, 10423–10428; c)
S. R. Stauffer, Piperidine and Pyrrolidine Beta-Secretase Inhibitors for the
Treatment of Alzheimer's Disease, 2008, WO2008036316 A2.
[31]
For Ru-catalyzed arylation at the beta position of cyclic amines, see: B.
Sundararaju, M. Achard, G. V. M. Sharma, C. Bruneau, J. Am. Chem. Soc.
2011, 133, 10340–10343. For Pd-catalyzed beta coupling of lithiated
Eur. J. Org. Chem. 2016, 139–149
148
© 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim