H. Qu et al. / Inorganic Chemistry Communications 14 (2011) 1347–1351
1351
[15] W.T. Liu, Y.C. Ou, Y.L. Xie, Z.J. Lin, M.L. Tong, Photoluminescent metal-organic
nanotubes via hydrothermal in situ ligand reactions, Eur. J. Inorg. Chem. 28 (2009)
4213–4218.
[16] H.S. Lin, P.A. Maggard, Syntheses and structures of a new series of silver-vanadate
hybrid solids and their optical and photocatalytic properties, Inorg. Chem. 47
(2008) 8044–8052.
[17] Z.L. Liao, G.D. Li, M.H. Bi, J.S. Chen, Preparation, structures, and photocatalytic
properties of three new uranyl-organic assembly compounds, Inorg. Chem. 47
(2008) 4844–4853.
[18] Z.T. Yu, Z.L. Liao, Y.S. Jiang, G.H. Li, G.D. Li, J.S. Chen, Construction of a microporous
inorganic–organic hybrid compound with uranyl units, Chem. Commun. (2004)
1814–1815.
[19] Z.T. Yu, Z.L. Liao, Y.S. Jiang, G.H. Li, J.S. Chen, Water-insoluble Ag-U-organic
assemblies with photocatalytic activity, Chem. Eur. J. 11 (2005) 2642–2650.
[20] P. Mahata, G. Madras, S. Natarajan, Novel photocatalysts for the decomposition of
organic dyes based on metal-organic framework compounds, J. Phys. Chem. B 110
(2006) 13759–13768.
[21] P. Mahata, G. Madras, S. Natarajan, New photocatalysts based on mixed-metal
pyridine dicarboxylates, Catal. Lett. 115 (2007) 27–32.
[22] J.H. Choi, Y.J. Choi, J.W. Lee, W.H. Shin, J.K. Kang, Tunability of electronic band gaps
from semiconducting to metallic states via tailoring Zn ions in MOFs with Co ions,
Phys. Chem. Chem. Phys. 11 (2009) 628–631.
1244 m, 1132w, 1115 s, 1102 s, 1088 m, 1067w, 1032w, 951 m, 926 m, 878 m,
858w, 832 m, 785 m, 761 m, 731 m, 715 m, 696 m, 661 s, 633w, 594w, 574w, 475 m,
435w. Synthesis of [Co(3,5-pdc)(bbi) 2H2O]n (3). Compound 3 was prepared in the
same way as 2, using 3,5-pdcH2 (0.2 mmol) instead of 3-NO2-bdcH2 at 140 °C for
3 days. Purple crystals of 3 were obtained (yield: 42% based on Co). IR (KBr) cm–1
:
3426 s, 3143 m, 1628 s, 1606 s, 1567 s, 1525 m, 1449 m, 1435 m, 1412 s, 1373 s,
1300w, 1283 m, 1229 m, 1157w, 1130 m, 1105 m, 1091 m, 1080 m, 1052w, 1031 m,
943 m, 860 m, 832 m, 773 m, 738 s, 697w, 664 m, 626w, 605w, 521w, 455w, 430w.
[27] Crystal data for 1: C18H17CdN5O6, Mr =511.78, Orthorhombic, space group Pbca,
a=16.7646(9) Å, b=10.2804(6) Å, c=23.5295(13) Å, α=β=γ=90º, V=4055.2
(4) Å3, Z =8, Dc=1.676 gcm−3, μ=1.123 mm−1, F(000)=2040, R1=0.0377,
wR2=0.0836, S=0.90. Crystal data for 2:C18H17CoN5O6, Mr =458.30, Orthorhom-
bic, space group Pbca, a=16.5485(15)Å, b=10.1647(9) Å, c=23.332(2) Å,
α=β=γ=90º, V=3924.7(6) Å3, Z =8, Dc=1.551 gcm−3, μ=0.921 mm−1, F
(000)=1880, R1=0.0514, wR2=0.1427, S=0.75. Crystal datafor 3: C17H21CoN5O6,
Mr =450.32, Monoclinic space group P21/n, a=9.5842(9) Å, b=12.4659(12) Å,
c=16.3112(15) Å, α=β=γ=90º, V=1933.6(3) Å3, Z =4, Dc=1.547 gcm−3
,
μ=0.933 mm−1, F(000)=932, R1 =0.0566,wR2 =0.1240, S=1.04.
[28] G. Guilera, J.W. Steed, Topological control in coordination polymers by non-
covalent forces, Chem. Commun. (1999) 1563–1564.
[29] P.K. Chen, S.R. Batten, Y. Qi, J.M. Zheng, Two 3-D cluster-based frameworks: highly
eight-connected molecular topology and magnetism, Cryst. Growth Des. 9 (2009)
2756–2761.
[23] M. Alvaro, E. Carbonell, B. Ferrer, F.X. Llabrés i Xamena, H. Garcia, Semiconductor
behavior of
5106–5112.
a
metal-organic framework (MOF), Chem. Eur. J. 13 (2007)
[30] H. Wu, X.W. Dong, J.F. Ma, H.Y. Liu, J. Yang, H.Y. Bai, Influence of anionic sulfonate-
containing and nitrogen-containing mixed-ligands on the structures of silver
coordination polymers, Dalton Trans. (2009) 3162–3174.
[31] L.L. Wen, Z.D. Lu, X.M. Ren, C.Y. Duan, Q.J. Meng, S. Gao, Metal-organic
coordination polymers containing pyridine-2,3-dicarboxylic acid N-oxide (2,3-
PDCO), Cryst. Growth Des. 9 (2009) 227–238.
[24] L.L. Wen, F. Wang, J. Feng, K.L. Lv, C.G. Wang, D.F. Li, Structures, photolumines-
cence, and photocatalytic properties of six new metal-organic frameworks based
on aromatic polycarboxylate acids and rigid imidazole-based synthons, Cryst.
Growth Des. 9 (2009) 3581–3589.
[25] D.E. Wang, K.J. Deng, K.L. Lv, C.G. Wang, L.L. Wen, D.F. Li, Structures, photo-
luminescence and photocatalytic properties of three new metal-organic frame-
works based on non-rigid long bridges, Cryst. Eng. Commun 11 (2009)
1442–1450.
[32] A.L. Spek, PLATON, A Multipurpose Crystallographic Tool, Utrecht University,
Utrecht, The Netherlands, 2003.
[33] K.L. Lv, Y.M. Xu, Effects of polyoxometalate and fluoride on adsorption and
photocatalytic degradation of organic dye X3B on TiO2: the difference in the
production of reactive species, J. Phys. Chem. B 110 (2006) 6204–6212.
[34] Y.M. Xu, C.H. Langford, UV or Visible-light induced degradation of X3B on TiO2
nanoparticles: The influence of adsorption, Langmuir 17 (2001) 897–902.
[35] Z. Xiong, Y. Xu, L. Zhu, J. Zhao, Photosensitized oxidation of substituted phenols on
aluminum phthalocyanine-intercalated organoclay, Environ. Sci. Technol. 39
(2005) 651–657.
[36] M. Hu, Y. Xu, J. Zhao, Efficient photosensitized degradation of 4-chlorophenol over
immobilized aluminum tetrasulfophthalocyanine in the presence of hydrogen
peroxide, Langmuir 20 (2004) 6302–6307.
[37] W. Chen, J.Y. Wang, C. Chen, Q. Yue, H.M. Yuan, J.X. Chen, S.N. Wang, Photo-
luminescent metal-organic polymer constructed from trimetallic clusters and
mixed carboxylates, Inorg. Chem. 42 (2003) 944–946.
[26] Synthesis of [Cd(3-NO2-bdc)(bbi)]n (1). A mixture of Cd(NO3)2 4H2O (0.0623 g,
0.2 mmol), 3-NO2-bdcH2 (0.0423 g, 0.20 mmol), bbi (0.0389 g, 0.20 mmol), NaOH
(0.0159 g, 0.40 mmol) and H2O (3 mL) was placed in a parr Teflon-lined stainless
steel vessel (25 cm3), and then the vessel was sealed and heated at 140 °C for 3 days.
After the mixture was slowly cooled to room temperature, coloress crystals of 1 were
obtained (yield: 36% based on Cd). IR (KBr) cm–1: 3438 m, 3131 m, 2933 m, 1599 s,
1525 s, 1458 s, 1392 s, 1350 s, 1293 m, 1242 m, 1157w, 1111 s, 1090 s, 1073w,
1034w, 942 s, 925 s, 852 s, 835 s, 789 s, 764 s, 713 s, 656 s, 626 m, 552 m, 451 m,
421 m. Synthesis of [Co(3-NO2-bdc)(bbi)]n (2). Compound 2 was prepared in the
same way as 1, using Co(Ac)2·4H2O (0.2 mmol) instead of Cd(NO3)2 4H2O at 130 °C
for 3 days. Purple crystals of 2 were obtained (yield: 45% based on Co). IR (KBr) cm–1
3421 s, 3119 m, 1622 s, 1593 s, 1561 m, 1525 s, 1460 s, 1360 s, 1294 m, 1254 m,
: