4502
C. Barea et al. / Bioorg. Med. Chem. Lett. 21 (2011) 4498–4502
Table 3
Physical Chemical Properties of quinoxaline derivativesa
ID
rule
%ABS TPSA (Å)
n-
RT
Molecular weight
<500
mi Log P
<5
Lipophilicity descriptorb
n-OHNH donors
65
n-NO acceptors
610
Lipinski’s violations
61
6140
(R
p)
1
2
3
4
5
6
7
8
67.28 120.9
67.27 120.8
67.27 120.8
51.48 166.7
51.48 166.7
51.48 166.7
51.48 166.7
69.98 113.1
64.11 130.1
64.11 130.1
60.94 139.3
64.11 130.1
64.11 130.1
64.11 130.1
3
3
3
4
4
4
4
4
4
4
5
4
4
4
426.84
406.42
420.45
421.79
421.79
456.22
387.33
364.32
398.76
378.34
394.34
400.29
392.37
396.33
1.19
0.96
1.34
0.65
0.43
0.80
0.65
0.65
1.25
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
8
8
8
11
11
11
11
9
9
9
10
9
9
0
0
0
1
1
1
1
0
0
0
0
0
0
0
À0.08
À0.03
0.57
À0.68
À0.47
0.18
À0.04
À0.43
À0.23
0.33
0
9
0.65
0.43
0.04
0.24
0.80
0.14
10
11
12
13
14
À0.33
9
a
%ABS, percentage of absorption, calculated by:%ABS = 109 À (0.345 Â TPSA); TPSA, topological polar surface area; n-RT, number of rotable bonds; mi log P, logarithm of
compounds partition coefficient between n-octanol and water.
b
Hydrophilic–lipophilic fragments determined for changes in R7 and R6, calculated by the sum of
Rp values, using compounds 7 and 8, and the fragment constant method
as Ref.20.
With regard to Scheme 2, the final synthetic route consists in
combining 3-amino-1,4-di-N-oxide quinoxaline-2-carbonitrile
derivatives with o-acetylsalicyloyl chloride, used for the treatment
of infections caused by protozoans, bacteria and viruses.19
In the last stage of the synthesis of sulfonamides, the tempera-
ture is critical and must remain below 0 °C, whereas the last stage
of synthesis of acetoxybenzamides is carried out at room temper-
ature. In addition, there is a loss of yield due to the purification
by column chromatography, decreasing from 50% to 25% (acet-
oxybenzamides) and 13–15% (sulfonamides).
A computational study for prediction of ADME properties of all
the molecules was performed using Molinspiration online property
calculation toolkit (MolinspirationCheminformatics). Parameters
such as solubility (mi log P), Topological Polar Surface Area
(TPSA)15, and absorption (%ABS) were calculated using the formula:
% ABS = 109 À (0.345 Â TPSA).16 Violations of Lipinski’s rule-of-five
were evaluated.17
Analysis of structure-activity relationship was performed using
condenses the molecular fields down to a set of points around the
molecule, termed ‘Field Points’.25 Field Points are the local extrema
of the electrostatic, van der Waals and hydrophobic potentials of
the molecule. Throughout FielViewÒ software, the Field Points are
colored as follows: Blue; negative field points (like to interact with
positives/H-bond donors on a protein), red; positive field points
(like to interact with negatives/H-bond acceptors on a protein), yel-
low; van der Waals surface field points (describing possible surface/
vdW interactions), or gold/orange; Hydrophobic field points (de-
scribe regions with high polarizability/hydrophobicity).
Quinoxaline derivatives harboring a halogenous group in posi-
tions 6 and 7 present interesting activity against Plasmodium and
Leishmania parasite and show interesting in silico ADME character-
istics. These products should be the starting point for the synthesis
of antiprotozoal compounds.
Denis Castillo. Carlos Barea is indebted to the University of Navarra
(Spain) for PhD scholarship.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Vicente, E.; Charnaud, S.; Bongard, E.; Villar, R.; Burguete, A.; Solano, B.; Ancizu,
S.; Perez-Silanes, S.; Aldana, I.; Vivas, L.; Monge, A. Molecules 2008, 13, 69.
2. Biot, C.; Chibale, K. Infect. Disord. Drug Targets 2006, 2, 173.
3. WHO:
5. Kedzierski, L.; Sakthianandeswaren, A.; Curtis, J. M.; Andrews, P. C.; Junk, P. C.;
Kedzierska, K. Curr. Med. Chem. 2009, 16, 599.
6. Carta, A.; Corona, P.; Loriga, M. Curr. Med. Chem. 2005, 12, 2259.
7. Monge, A.; Palop, J. A.; Piñol, A.; Martínez-Crespo, F. J.; Narro, S.; González, M.;
Sáinz, Y.; López de Ceráin, A. J. Heterocycl. Chem. 1994, 31, 1135.
8. Burguete, A.; Estevez, Y.; Castillo, D.; González, G.; Villar, R.; Solano, B.; Vicente,
E.; Pérez-Silanes, S.; Aldana, I.; Monge, A.; Sauvain, M.; Deharo, E. Memorias do
Oswaldo Cruz 2008, 103, 778.
9. Estevez, Y.; Quiliano, M.; Burguete, A.; Zimic, M.; Málaga, E.; Verástegui, M.;
Pérez-Silanes, S.; Aldana, I.; Monge, A.; Castillo, D.; Deharo, E. Exp. Parasitol.
2011, 127, 745.
10. Ancizu, S.; Moreno, E.; Torres, E.; Burguete, A.; Perez-Silanes, S.; Benitez, D.;
Villar, R.; Solano, B.; Marin, A.; Aldana, I.; Cerecetto, H.; Gonzalez, M.; Monge, A.
Molecules 2009, 14, 2256.
11. Ortega, M. A.; Sainz, Y.; Montoya, M. E.; Jaso, A.; Zarranz, B.; Aldana, I.; Monge,
A. Arzneim.-Forsch. 2002, 52, 113.
12. González, M.; Cerecetto, H. Springer 2007, 10, 265.
13. Ley, K.; Seng, F. Synthesis 1975, 415.
14. Dea-Ayuela, M. A.; Castillo, E.; González-Álvarez, M.; Vega, C.; Rolón, M.; Bolás-
Fernández, F.; Borrás, J.; González-Rosende, M. E. Bioorg. Med. Chem. 2009, 17,
7449.
15. Ertl, P.; Rohde, B.; Selzer, P. J. Med. Chem. 2000, 43, 3714.
16. Zhao, Y. H.; Abraham, M. H.; Le, J.; Hersey, A.; Luscombe, C. N.; Beck, G.;
Sherborne, B.; Cooper, I. Pharm. Res. 2002, 19, 1446.
17. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Adv. Drug Delivery Rev.
2001, 46, 3.
18. Veber, D. F.; Johnson, S. R.; Cheng, H. Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D.
J. Med. Chem. 2002, 45, 2615.
19. De Carvalho, L. P. S.; Lin, G.; Jiang, X.; Nathan, C. J. Med. Chem. 2009, 52, 5789.
20. Gordon, L. F. J. Pharm. Sci. 1980, 69, 1109.
25. Cheeseright, T.; Mackey, M.; Rose, S.; Vinter, J. G. J. Chem. Inf. Model. 2006, 46,
665.
Acknowledgements
The authors gratefully acknowledge the ‘Oficina de Cooperación
de la Embajada de Bélgica’ for funding a Master Scholarship to