Table 1 Aldol reactions between aldehydes and cyclohexanonea
of 4-nitrobenzaldehyde revealed the small but significant
high-field shift (ca. 0.1 ppm) of the amide proton signal from
that of the free Co–Pro1 in solution, which could possibly be an
indicator that 4-nitrobenzaldehyde was capsulated within the
pocket of the Co–Pro1 through the hydrogen bonding inter-
actions corresponding to the amide donors.
Con.b dr
eec
We gratefully acknowledge financial support from the
National Natural Science foundation of China (20801008
and 21025102).
Entry Substrates
Cat
(%)
(A/S)b (%)
1
2
3
4
4-Nitrobenzaldehyde
Co–Pro1 42
6 : 1
2 : 1
6 : 1
2 : 1
10 : 1
2 : 1
—
73
50
70
62
62
44
—
—
L-Pro1 36
Co–Pro1 38
L-Pro1 23
Co–Pro1 24
L-Pro1 21
Co–Pro1 Trace
24
3-Nitrobenzaldehyde
2-Nitrobenzaldehyde
3-Formyl-1-phenylene-
Notes and references
1 (a) J.-M. Lehn, Chem. Soc. Rev., 2007, 36, 151–160;
(b) B. H. Northrop, Y. R. Zheng, K. W. Chi and P. J. Stang,
Acc. Chem. Res., 2009, 42, 1554–1563; (c) N. C. Gianneschi,
M. S. Maser and C. A. Mirkin, Acc. Chem. Res., 2005, 38,
825–837; (d) R. M. McKinlay, G. W. V. Cave and J. L. Atwood,
Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 5944–5948.
(3,5-di-tert-butylbenzoate) L-Pro1
1 : 1
a
The reaction was carried out at room temperature for 10 days with
cyclohexanone (5 mmol) and aldehyde (0.5 mmol) in the presence of
2 (a) M. Yoshizawa, J. K. Klosterman and M. Fujita, Angew. Chem.,
Int. Ed., 2009, 48, 3418–3438; (b) P. Mal, B. Breiner, K. Rissanen
and J. R. Nitschke, Science, 2009, 324, 1697–1699; (c) T. S.
Koblenz, J. Wassenaar and J. N. H. Reek, Chem. Soc. Rev.,
2008, 37, 247–262.
3 (a) M. D. Ward, Chem. Commun., 2009, 4487–4499;
(b) R. W. Saalfrank, H. Maid and A. Scheurer, Angew. Chem.,
Int. Ed., 2008, 47, 8794–8824; (c) J. R. Li and H. C. Zhou, Nat.
Chem., 2010, 2, 893–898; (d) T. D. Hamilton, G. S. Papaefstathiou
and L. R. MacGillivray, J. Am. Chem. Soc., 2008, 130,
14366–14367.
1.5% mmol Co–Pro1 (7.5 mmol)/5.0% mmol L-Pro1 (0.025 mmol) in
d6-DMSO (0.5 mL). The conversion and diastereomeric ratio were
b
determined by 1H NMR spectroscopy of crude products. Values
c
represent the major isomer. The ee values were determined by chiral
HPLC on a Chiralcel AD-H column.
lower diastereoselectivity (2 : 1) as well as the decrease of
enantioselectivity (50%, ee) (table entry 1). In fact our metal–
organic catalyst Co–Pro1 exhibited excellent specificity for the
anti conformation of the product corresponding to the aldol
reactions of the nitrobenzaldehydes, which drives the significant
improvements from those of the relative catalytic reaction with
L-Pro1. The better diastereo- and enantio-selection of the
catalytic aldol reaction with Co–Pro1 may originate from
the restricted movement of the substrates in the confined
pocket-like environment in combination with multiple chiral
inductions.
4 (a) J.-M. Lehn, Angew. Chem., Int. Ed. Engl., 1990, 29, 1304–1319;
(b) D. Ringe and G. A. Petsko, Science, 2008, 320, 1428–1429.
5 (a) A. J. Kirby and F. Hollfeldner, From Enzyme Models
to Model Enzymes, RSC Publishing, 2009; (b) G. Knor,
ChemBioChem, 2001, 2, 593–596.
¨
6 (a) S. J. Lee, S.-H. Cho, K. L. Mulfort, D. M. Tiede, J. T. Hupp
and S. T. Nguyen, J. Am. Chem. Soc., 2008, 130, 16828–16829;
(b) M. D. Pluth, R. G. Bergman and K. N. Raymond, Science,
2007, 316, 85–88; (c) M. Yoshizawa, M. Tamura and M. Fujita,
Science, 2006, 312, 251–254.
7 (a) X. Zhang and K. N. Houk, Acc. Chem. Res., 2005, 38, 379–385;
(b) D. M. Vriezema, M. C. Aragones, J. A. A. W. Elemans,
J. J. L. M. Cornelissen, A. E. Rowan and R. J. M. Nolte, Chem.
Rev., 2005, 105, 1445–1489; (c) S. Das, G. W. Brudvig and
R. H. Crabtree, Chem. Commun., 2008, 413–424.
8 (a) L. Cronin, Angew. Chem., Int. Ed., 2006, 45, 3576–3578;
(b) C. Schmuck, Angew. Chem., Int. Ed., 2007, 46, 5830–5833;
(c) T. Sawada, M. Yoshizawa, S. Sato and M. Fujita, Nat. Chem.,
2009, 1, 53–58; (d) H. Clever, S. Tashiro and M. Shionoya, Angew.
Chem., Int. Ed., 2009, 48, 7010–7012; (e) M. D. Pluth, D. Fiedler,
J. S. Mugridge, R. G. Bergman and K. N. Raymond, Proc. Natl.
Acad. Sci. U. S. A., 2009, 106, 10438–10443.
9 J. Meeuwissen and J. N. H. Reek, Nat. Chem., 2010, 2, 615–621.
10 (a) G. Z. Yuan, C. F. Zhu and Y. Cui, J. Am. Chem. Soc., 2009,
131, 10452–10460; (b) D. D. Dang, P. Y. Wu, C. He, Z. Xie and
C. Y. Duan, J. Am. Chem. Soc., 2010, 132, 14321–14323;
(c) L. Q. Ma, C. Abney and W. B. Lin, Chem. Soc. Rev.,
2009, 38, 1248–1256; (d) A. J. Terpin, M. Ziegler, D. W.
Johnson and K. N. Raymond, Angew. Chem., Int. Ed., 2001, 40,
157–160.
11 (a) L. C. Dias, A. A. Marchi, A. B. Ferreira and A. M. Aguilar,
J. Org. Chem., 2008, 73, 6299–6311; (b) G. Guillena, M. Hita, C. del,
C. Najera and S. F. Viozquez, J. Org. Chem., 2008, 73, 5933–5943.
12 C. He, Z. H. Lin, Z. He, C. Y. Duan, C. H. Xu, Z. M. Wang and
C. H. Yan, Angew. Chem., Int. Ed., 2008, 47, 877–881.
13 H. M. Wu, C. He, Z. H. Lin, Y. Liu and C. Y. Duan, Inorg. Chem.,
2009, 48, 408–410.
14 M. Banerjee, S. Das, M. Yoon, H. J. Choi, M. H. Hyun, S. M. Park,
G. Seo and K. Kim, J. Am. Chem. Soc., 2009, 131, 7524–7525.
15 (a) S. Bahmanyar, K. N. Houk, H. J. Martin and B. List, J. Am.
Chem. Soc., 2003, 125, 2475–2479; (b) M. Nakadai, S. Saito and
H. Yamamoto, Tetrahedron, 2002, 58, 8167–8177; (c) S.
Sathapornvajana and T. Vilaivan, Tetrahedron, 2007, 63,
10253–10259.
To further probe whether activation of the carbonyl species
occurs inside the hydrophobic hollow of the catalyst and the
reflection of compound configuration on diastereomers, a
substrate of increasing dimension was tested. While the reaction
between bulky aldehyde 3-formyl-1-phenylene-(3,5-di-tert-
butylbenzoate),14 which is larger than the pocket size of Co–Pro1,
and cyclohexanone in the presence of L-Pro1 gave the conversion
of about 24%, no signals corresponding to the aldol product
were found in the NMR spectra of the reaction mixture under
the same experimental conditions. From a view point of
mechanism, the bowl-like Co–Pro1 first acts as a mimic of
the pocket of an enzyme to accelerate the reaction through
encapsulating the substrates within the pocket, greatly increasing
the local concentration of the substrates and preorganizing the
substrates in the correct orientation to react. These homochiral
pyrrolidine moieties attached within the chiral pocket of
Co–Pro1 interact with the cyclohexanone to form the anti-
enamine transition-state,15 which dominates the asymmetric
aldol reactions that occur via an enamine pathway. Infrared
spectroscopy of the Co–Pro1 solution in the presence of
cyclohexanone exhibited one broad C–O stretch at 1685 cmÀ1
.
The significant red-shift from 1709 cmÀ1 (free cyclohexanone)
supports the encapsulation of cyclohexanone within the pocket
of the catalyst and the possible activation of the substrates
within the pocket of the catalyst through an enamine transition-
state. 1H NMR spectra of the Co–Pro1 solution in the presence
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 8415–8417 8417