Journal of the American Chemical Society
Page 8 of 10
Stereoselective
Synthesis
of
βꢀLactams
with
Hultin, P. G.; Hein, J. E. RealꢀTime HPLCꢀMS Reaction
Polyaromatic Imines: Entry to New and Novel
Anticancer Agents. J. Med. Chem 2002, 46, 12–15.
Progress Monitoring Using an Automated Analytical
Platform. React. Chem. Eng. 2017, 2, 309–314.
1
2
3
4
5
6
7
8
9
(5)
(6)
(7)
Bonneau, P. R.; Hasani, F.; Plouffe, C.; Malenfant, E.;
LaPlante, S. R.; Guse, I.; Ogilvie, W. W.; Plante, R.;
Davidson, W. C.; Hopkins, J. L.; Morelock, M. M.;
Cordingley, M. G; Deziel, R.. Inhibition of Human
Cytomegalovirus Protease by Monocyclic βꢀLactam
(17)
(18)
(19)
Ye, M. C.; Zhou, J.; Tang, Y. Trisoxazoline/Cu(II)ꢀ
Promoted Kinugasa Reaction. Enantioselective Synthesis
of βꢀLactams. J. Org. Chem. 2006, 71, 3576–3582.
Ye, M.ꢀC.; Zhou, J.; Huang, Z.ꢀZ.; Tang, Y. Chiral
tris(oxazoline)/Cu(II) Catalyzed Coupling of Terminal
Alkynes and Nitrones. Chem. Commun. 2003, 0, 2554.
Derivatives: Kinetic Characterization Using
a
Fluorescent Probe. J. Am. Chem. Soc. 1999, 121, 2965–
2973.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Miura, M.; Enna, M.; Okuro, K.; Nomura, M. Copperꢀ
Catalyzed Reaction of Terminal Alkynes with Nitrones.
Selective Synthesis of 1ꢀAzaꢀ1ꢀButenꢀ3ꢀYne and 2ꢀ
Azetidinone Derivatives. J. Org. Chem. 1995, 60, 4999–
5004.
GeronaꢀNavarro, G.; Pérez De Vega, M. J.; Garcíaꢀ
López, M. T.; Andrei, G.; Snoeck, R.; De Clercq, E.;
Balzarini, J.; GonzálezꢀMuñiz, R. From 1ꢀAcylꢀβꢀ
Lactam Human Cytomegalovirus Protease Inhibitors to
1ꢀBenzyloxycarbonylazetidines with Improved Antiviral
(20)
Mames, A.; Stecko, S.; Mikołajczyk, P.; Soluch, M.;
Furman, B.; Chmielewski, M. Direct, Catalytic Synthesis
of Carbapenams via Cycloaddition/Rearrangement
Cascade Reaction: Unexpected Acetylenes’ Structure
Effect. J. Org. Chem. 2010, 75, 7580–7587.
Activity.
A Straightforward Approach to Convert
Covalent to Noncovalent Inhibitors. J. Med. Chem. 2005,
48, 2612–2621.
Ojima, I.; Delaloge, F. Asymmetric Synthesis of
BuildingꢀBlocks for Peptides and Peptidomimetics by
Means of the βꢀLactam Synthon Method. Chem. Soc.
Rev. 1997, 26, 377–386.
(21)
(22)
Whiting, M.; Fokin, V. V. CopperꢀCatalyzed Reaction
Cascade: Direct Conversion of Alkynes intoNꢀ
Sulfonylazetidinꢀ2ꢀImines. Angew. Chem. Int. Ed. 2006,
45, 3157–3161.
(8)
(9)
Kinugasa, M.; Hashimoto, S. The Reactions of copper(I)
Phenylacetylide with Nitrones. J. Chem. Soc. Chem.
Commun. 1972, 0, 466.
Zhang, X.; Hsung, R. P.; Li, H.; Zhang, Y.; Johnson, W.
L.; Figueroa, R. A Highly Stereoselective Synthesis of
Chiral αꢀAminoꢀβꢀLactams via the Kinugasa Reaction
Employing Ynamides. Org. Lett. 2008, 10, 3477–3479.
Lo, M. M.ꢀC.; Fu, G. C. Cu(I)/Bis(azaferrocene)ꢀ
Catalyzed Enantioselective Synthesis of βꢀLactams via
Couplings of Alkynes with Nitrones. J. Am. Chem. Soc.
2002, 124, 4572–4573.
(23)
(24)
Heine, H. W.; Zibuck, R.; VandenHeuvel, W. J. A.
Mechanisms for the Reactions of Nitrones with Aroyl
Chlorides. J. Am. Chem. Soc. 1982, 104, 3691–3694.
(10)
(11)
Stecko, S.; Furman, B.; Chmielewski, M. Kinugasa
Reaction: An “ugly Duckling” of βꢀLactam Chemistry.
Tetrahedron 2014, 70, 7817–7844.
Foley, D. A.; Dunn, A. L.; Zell, M. T. Reaction
Monitoring Using Online vs Tube NMR Spectroscopy:
Seriously Different Results. Magn. Reson. Chem. 2016,
54, 451–456.
Santoro, S.; Liao, R.ꢀZ.; Marcelli, T.; Hammar, P.; Himo,
F. Theoretical Study of Mechanism and Stereoselectivity
of Catalytic Kinugasa Reaction. J. Org. Chem. 2015, 80,
2649–2660.
(25)
(26)
Anslyn, E. V.; Dougherty, D. A. Modern Physical
Organic Chemistry; University Science, 2006.
(12)
Blackmond, D. G. Reaction Progress Kinetic Analysis: A
Powerful Methodology for Mechanistic Studies of
Complex Catalytic Reactions. Angew. Chem. Int. Ed.
2005, 44, 4302–4320.
Staudinger,
H.
Zur
Kenntniss
Der
Ketene.
Diphenylketen. Justus Liebig’s Ann. der Chemie 1907,
356, 51–123.
(27)
(28)
Shintani, R.; Fu, G. C. Catalytic Enantioselective
Synthesis OfβꢀLactams: Intramolecular Kinugasa
Reactions and Interception of an Intermediate in the
Reaction Cascade. Angew. Chem. Int. Ed. 2003, 42,
4082–4085.
(13)
(14)
Blackmond, D. G. Kinetic Profiling of Catalytic Organic
Reactions as a Mechanistic Tool. J. Am. Chem. Soc.
2015, 137, 10852–10866.
Burés, J. Variable Time Normalization Analysis: General
Graphical Elucidation of Reaction Orders from
Concentration Profiles. Angew. Chem. Int. Ed. 2016, 55,
16084–16087.
AlꢀAmin, M.; Roth, K. E.; Blum, S. A. Mechanistic
Studies of Gold and Palladium Cooperative Dualꢀ
Catalytic CrossꢀCoupling Systems. ACS Catal. 2014, 4,
622–629.
(15)
Burés, J. A Simple Graphical Method to Determine the
Order in Catalyst. Angew. Chem. Int. Ed. 2016, 55,
2028–2031.
(16)
.
Malig, T. C.; Koenig, J. D. B.; Situ, H.; Chehal, N. K.;
ACS Paragon Plus Environment