acetate12 were also exploited for the preparation of R-
GalCer. However, these glycosylation reactions produced
mostly a mixture of R/β isomers which were very difficult
to separate.
There is always suspicion about the anomeric purity of
synthetic galactosylceramide as it is difficult toseparate the
R isomers from the β isomers, especially when they are
present in trace amounts in the glycosylation reactions.
Until now, there is no chemical glycosylation reaction in
this area with 100% R/β selectivity. Time-consuming
separation procedures are required to separate the isomers
from the above synthetic methodologies, which lowers the
reaction efficiency and prevents the methods from being
extended to large scale synthesis. To overcome the diffi-
culties and flaws of current synthetic methodologies, we
chose to begin our synthesis of R-galactosyl lipids from the
naturally configured R-galactoside, raffinose. By avoiding
glycosylation reactions, a new and easily scaled synthesis
of several KRN7000 analogues was developed via high
yield reactions that could be easily adapted to industrial
scale synthesis.
(1) (a) Florence, W. C.; Xia, C. F.; Gordy, L. E.; Chen, W. L.; Zhang,
Y. L.; Scott-Browne, J.; Kinjo, Y.; Yu, K. O. A.; Keshipeddy, S.; Pellicci,
D. G.; Patel, O.; Kjer-Nielsen, L.; McCluskey, J.; Godfrey, D. I.;
Rossjohn, J.; Richardson, S. K.; Porcelli, S. A.; Howell, A. R.; Haya-
kawa, K.; Gapin, L.; Zajonc, D. M.; Wang, P. G.; Joyce, S. EMBO J.
2009, 28, 3579. (b) Chen, W. L.; Xia, C. F.; Wang, J. H.; Thapa, P.; Li,
Y. S.; Talukdar, A.; Nadas, J.; Zhang, W. P.; Zhou, D. P.; Wang, P. G. J.
Org. Chem. 2008, 73, 4762. (c) Zhang, W. P.; Xia, C. F.; Nadas, J.; Chen,
W. L.; Gu, L.; Wang, P. G. Bioorg. Med. Chem. 2011, 19, 2726. (d) Thapa,
P.; Nehete, P.; He, H.; Nehete, B.; Buchl, S.; Bull, L. M.; Qian, J. F.; Yi, Q.;
Lu, H. Z.; Zhu, H. X.; Zhang, J. M.; Wang, P. G.; Arduino, R. C.; Sastry,
J.; Zhou, D. P. J. Immunother. 2010, 33, 889. (e) Zhang, W. P.; Zheng,
X. C.; Xia, C. F.; Perali, R. S.; Yao, Q. J.; Liu, Y.; Zheng, P.; Wang, P. G..
ChemBioChem 2008, 9, 1423. (f) Natori, T.; Koezuka, Y.; Higa, T.
Tetrahedron Lett. 1993, 34, 5591. (g) Natori, T.; Morita, M.; Akimoto,
K.; Koezuka, Y. Tetrahedron 1994, 50, 2771. (h) Morita, M.; Motoki, K.;
Akimoto, K.; Natori, T.; Sakai, T.; Sawa, E.; Yamaji, K.; Koezuka, Y.;
Kobayashi, E.; Fukushima, H. J. Med. Chem. 1995, 38, 2176. (i) Burdin,
N.; Brossay, L.; Kronenberg, M. Eur. J. Immunol. 1999, 29, 2014.
(g) Carnaud, C.; Lee, D.; Donnars, O.; Park, S. H.; Beavis, A.; Koezuka,
Y.; Bendelac, A. J. Immunol. 1999, 163, 4647. (k) Crowe, N. Y.; Uldrich,
A. P.; Kyparissoudis, K.; Hammond, K. J. L.; Hayakawa, Y.; Sidobre, S.;
Keating, R.; Kronenberg, M.; Smyth, M. J.; Godfrey, D. I. J. Immunol.
2003, 171, 4020. (l) Zajonc, D. M.; Cantu, C., III; Mattner, J.; Zhou, D.;
Savage, P. B.; Bendelac, A.; Wilson, I. A.; Teyton, L. Nat. Immunol. 2005,
6, 810. (m) Koch, M.; Stronge, V. S.; Shepherd, D.; Gadola, S. D.; Mathew,
B.; Ritter, G.; Fersht, G. S.; Schmidt, R. R.; Jones, E. Y.; Cerundolo, V.
Nat. Immunol. 2005, 6, 819. (n) Pellicci, D. G.; Patel, O.; Kjer-Nielsen, L.;
Pang, S. S.; Sullivan, L. C.; Kyparissoudis, K.; Brooks, A. G.; Reid, H. H.;
Gras, S.; Lucet, I. S.; Koh, R.; Smyth, M. J.; Mallevaey, T.; Matsuda, J. L.;
Gapin, L.; McCluskey, J.; Godfrey, D. I.; Rossjohn, J. Immunity 2009, 31,
47.
By comparing the KRN7000 structure and raffinose, we
designed a series of new potential NKT cell ligands as
shown in Scheme 1 (compounds 1, 2, 3, 4, 5).
Scheme 1. Structures of KRN7000, Raffinose, and the Proposed
R-Galactosylipids
(2) Zeng, Z. H.; Castano, A. R.; Segelke, B. W.; Stura, E. A.;
Peterson, P. A.; Wilson, I. A. Science 1997, 277, 339.
(3) Reviews: (a) Wu, D.; Fujio, M.; Wong, C. H. Bioorg. Med. Chem.
2008, 16, 1073. (b) Savage, P. B.; Teyton, L.; Bendelac, A. Chem. Soc.
Rev. 2006, 35, 771.
(4) (a) Xia, C.; Yao, Q.; Schuemann, J.; Rossy, E.; Chen, W.; Zhu, L.;
Zhang, W.; De Libero, G.; Wang, P. G. Bioorg. Med. Chem. Lett. 2006,
16, 2195. (b) Xing, G.-W.; Wu, D.; Poles, M. A.; Horowitz, A.; Tsuji, M.;
Ho, D. D.; Wong, C.-H. Bioorg. Med. Chem. 2005, 13, 2907.
(c) Figueroa-Perez, S.; Schmidt, R. R. Carbohydr. Res. 2000, 328, 95.
(d) Leung, L.; Tomassi, C.; Van Beneden, K.; Decruy, T.; Elewaut, D.;
Elliott, T.; Al-Shamkhani, A.; Ottensmeier, C.; Van Calenbergh, S.;
Werner, J.; et al. Org. Lett. 2008, 10, 4433. (e) Lee, A.; Farrand, K. J.;
Dickgreber, N.; Hayman, C. M.; Juers, S.; Hermans, I. F.; Painter, G. F.
Carbohydr. Res. 2006, 341, 2785. (f) Park, J.-J.; Lee, J. H.; Ghosh, S. C.;
Bricard, G.; Venkataswamy, M. M.; Porcelli, S. A.; Chung, S.-K.
Bioorg. Med. Chem. Lett. 2008, 18, 3906. (g) Kim, S.; Song, S.; Lee,
T.; Jung, S.; Kim, D. Synthesis 2004, 847. (h) Kimura, A.; Imamura, A.;
Ando, H.; Ishida, H.; Kiso, M. Synlett 2006, 2379.
(5) Fan, G.-T.; Pan, Y.-s.; Lu , K.-C.; Cheng, Y.-P.; Lin, W.-C.; Lin,
S.; Lin, C.-H.; Wong, C.-H.; Fang, J.-M.; Lin, C.-C. Tetrahedron 2005,
61, 1855.
From raffinose 6, the fully benzylated derivative 7 was
prepared in 80% yield by treatment with benzyl bromide
and sodium hydride in DMF (Scheme 2). Partially benzy-
lated sugar 8 was accessed, using a described procedure,13
by selective cleavage of the β-fructofuranosidic linkage in 7
under acidic conditions in 90% yield. A subsequent reduc-
tion of hemiacetal 8 to diol 9 was conducted using NaBH4
as the reductant which, among many other reductants
screened, was found to be the best in terms of safety and
reaction yield (Scheme 2).
(6) (a) Ndonye, R. M.; Izmirian, D. P.; Dunn, M. F.; Yu, K. O. A.;
Porcelli, S. A.; Khurana, A.; Kronenberg, M.; Richardson, S. K.;
Howell, A. R. J. Org. Chem. 2005, 70, 10260. (b) Li, Q.; Ndonye,
R. M.; Illarionov, P. A.; Yu, K. O. A.; Jerud, E. S.; Diaz, K.; Bricard,
G.; Porcelli, S. A.; Besra, G. S.; Chang, Y.-T.; Howell, A. R. J. Comb.
Chem. 2007, 9, 1084. (c) Du, W.; Gervay Hague, J. Org. Lett. 2005, 7,
2063. (d) Boutureira, O.; Morales-Serna, J. A.; Diaz, Y.; Matheu, M. I.;
Castillon, S. Eur. J. Org. Chem. 2008, 1851.
(7) Goff, R. D.; Gao, Y.; Mattner, J.; Zhou, D.; Yin, N.; Cantu, C.;
Teyton, L.; Bendelac, A.; Savage, P. B. J. Am. Chem. Soc. 2004, 126,
13602.
(8) Murata, K.; Toba, T.; Nakanishi, K.; Takahashi, B.; Yamamura,
T.; Miyake, S.; Annoura, H. J. Org. Chem. 2005, 70, 2398.
(9) Toba, T.; Murata, K.; Nakanishi, K.; Takahashi, B.; Takemoto,
N.; Akabane, M.; Nakatsuka, T.; Imajo, S.; Yamamura, T.; Miyake, S.;
Annoura, H. Bioorg. Med. Chem. Lett. 2007, 17, 2781.
Diol 9 was an ideal intermediate, having only two
reactive sites for introducing the lipid chains. The easiest
way of accomplishing this was through direct alkylation of
(10) Matto, P.; Modica, E.; Franchini, L.; Facciotti, F.; Mori, L.; De
Libero, G.; Lombardi, G.; Fallarini, S.; Panza, L.; Compostella, F.;
Ronchetti, F. J. Org. Chem. 2007, 72, 7757.
(11) Stallforth, P.; Adibekian, A.; Seeberger, P. H. Org. Lett. 2008,
10, 1573.
(12) Barbieri, L.; Costantino, V.; Fattorusso, E.; Mangoni, A.; Aru,
E.; Parapini, S.; Taramelli, D. Eur. J. Org. Chem. 2004, 468.
(13) Yamanoi, T.; Misawa, N.; Matsuda, S.; Watanabe, M. Carbo-
hydr. Res. 2008, 343, 1366.
Org. Lett., Vol. 13, No. 17, 2011
4531