(Scheme 1).2 A rapidly growing number of different types
of heterocycles, especially those containing nitrogen, have
been constructed by applying this novel strategy in recent
years,3 since the time of the seminal studies of the synthesis
of carbazoles by Buchwald.3a
inefficient. For example, the most common approach to
these substances consists of nucleophilic substitution reac-
tions of aryl or alkyl amines with 4-chloroquinazolines,
whose preparation requires multistep routes from uncom-
mon 2-aminobenzoic acid derivatives.12 Inaddition, this
approach is inefficient for sterically hindered aryl and alkyl
amines.13
When an alkyne4 or carbon monoxide5 is present in the
reaction mixture, coordination to the metal is followed by
insertion into the carbonÀmetal bond prior to reductive
elimination following CÀH bond activation. These pro-
cesses result in the formation of new carbonÀmetal bonds
as part of expanded metallocycles. Finally, reductive elim-
ination then furnishes diversified heterocyclic scaffolds
(Scheme 1). The similarity between CO and isonitriles in
terms of their coordination to transition metals6 suggests
that an equivalent CÀH isonitrile insertion process should
be viable. To our surprise, a transition-metal-catalyzed
intramolecular CÀH amidination reaction involving iso-
nitrile insertion has not been reported, even though palla-
dium-catalyzed inter- or intramolecular amidinations of
aryl or vinyl bromides7 and ketimine formation by CÀH
isonitrile insertion are known.6a
Scheme 1. Nitrogen Heterocycles via Intramolecular C(sp2)ÀH
Activation
4-Aminoquinazolines have a privileged structure that
exists in many biologically active compounds, including
protein kinase inhibitors,8 chemokine receptor CCR4
antagonists,9adenosine receptor antagonists,10 and most
importantly anticancer agents.11 However, current meth-
ods for synthesis of members of this family are generally
Stimulated by the results of recent studies of benzimi-
dazole synthesis by way of CÀH activation of N-aryl-
amidines,3c,d we reasoned that isonitrile insertion would
occur before reductive elimination, yielding 4-aminoqui-
nazolines upon tautomerization. Below, we describe the
first example of palladium-catalyzed intramolecular aryl
CÀH amidination by isonitrile insertion to provide a wide
variety of 4-aminoquinazolines from N-arylamidines.
The effort was initiated by studies of reactions using N-
phenylbenzamidine 1a14 and tert-butylisonitrile 2a (3 equiv)
as substrates in the presence of a palladium catalyst under
various conditions (Table 1). Importantly, the desired
product N-tert-butyl-4-amino-2-phenylquinazoline 3a was
produced in 42% yield under conditions involving Pd-
(OAc)2 (10 mol %), K2CO3 (1.5 equiv), and benzoquinone
(BQ, 1.5 equiv) in refluxing toluene (entry 1, Table 1).
Screening of other oxidants used widely in palladium-
catalyzed CÀH functionalization methods led to the sig-
nificant finding that the reaction proceeds equally well
under an air atmosphere (entries 2À4, Table 1). The
isolated yield of 3a is improved to 80% when the reaction
is performed under the balloon pressure of dioxygen (entry
5, Table 1).15 The type of base used is also an important
(6) (a) Tobisu, M.; Imoto, S.; Ito, S.; Chatani, N. J. Org. Chem. 2010,
75, 4835 and references therein. (b) Jones, W. D.; Foster, G. P.; Putinas,
J. M. J. Am. Chem. Soc. 1987, 109, 5047. (c) Jones, W. D.; Kosar, W. P.
J. Am. Chem. Soc. 1986, 108, 5640. (d) Hsu, G. C.; Kosar, W. P.; Jones,
W. D. Organometallics 1994, 13, 385. (e) Jones, W. D.; Hessell, E. T.
Organometallics 1990, 9, 718. (f) Vicente, J.; Saura-Llamas, I.; Garcıa-
Lopez, J.-A. Organometallics 2009, 28, 448. (g) Gopi, K.; Thirupathi, N.
Organometallics 2011, 30, 572. (h) Dupont, J.; Consorti, C. S.; Spencer,
J. Chem. Rev. 2005, 105, 2527.
(7) (a) Saluste, C. G.; Whitby, R. J.; Furber, M. Angew. Chem., Int.
Ed. 2000, 39, 4156. (b) Saluste, C. G.; Whitby, R. J.; Furber, M.
Tetrahetron Lett. 2001, 42, 6191. (c) Tetale, K. K. R.; Whitby, R. J.;
Light, M. E.; Hurtshouse, M. B. Tetrahedron Lett. 2004, 45, 6991. (d)
Saluste, G. G.; Crumpler, S.; Furber, M.; Whitby, R. J. Tetrahedron
Lett. 2005, 46, 6995.
(8) (a) Pierce, A. C.; Haar, E.; Binch, H. M.; Kay, D. P.; Patel, S. R.;
Li, P. J. Med. Chem. 2005, 48, 1278. (b) Gellibert, F.; Fouchet, M.-H.;
Nguyen, V.-L.; Wang, R.; Krysa, G.; Gouville, A.-C.; Huet, S.; Dodic,
N. Bioorg. Med. Chem. Lett. 2009, 19, 2277. (c) Galdwell, J. J.; Welsh,
E. J.; Matijssen, C.; Anderson, V. E.; Antoni, L.; Boxall, K.; Urban, F.;
Hayes, A.; Raynaud, F. I.; Rigoreau, L. J. M.; Raynham, T.; Wynne
Aherne, G.; Pearl, L. H.; Oliver, A. W.; Garrett, M. D.; Collins, I.
J. Med. Chem. 2011, 54, 580.
ꢀ
(9) Purandare, S. V.; Gao, A.; Wan, H.; Somerville, J.; Burke, C.;
Seachord, C.; Vaccaro, W.; Wityak, J.; Poss, M. A. Bioorg. Med. Chem.
Lett. 2005, 15, 2669.
(10) Muijlwijk-Koezen, J. E.; Timmerman, H.; Vollinga, R. C.;
€
Kunzel, C. F. D.; Groote, M.; Visser, S.; Ijzerman, A. P. J. Med. Chem.
2001, 44, 749.
(11) (a) Sirisoma, N.; Pervin, A.; Zhang, H.; Jiang, S.; Willardsen,
J. A.; Anderson, M. B.; Mather, G.; Pleiman, C. M.; Kasibhatla, S.;
Tseng, B.; Drewe, J.; Cai, S. X. J. Med. Chem. 2009, 52, 2341. (b) Barker,
A. J.; Gibson, K. H.; Godfrey, W.; Barlow, J. J.; Healy, M. P.;
Woodburn, J. R.; Ashton, S. E.; Curry, B. J.; Scarlett, L.; Henthorn,
L.; Richards, L. Bioorg. Med. Chem. Lett. 2001, 11, 1911.
(13) Ahmad, O. K.; Hill, M. D.; Movassaghi, M. J. Org. Chem. 2009,
74, 8460.
(14) For preparation of substrates 1, see Supporting Information.
(15) For recent examples using dioxygen as the oxidant in palladium
promoted CÀH functionalizations, see: (a) Inamoto, K.; Hasegawa, C.;
Kawasaki, J.; Hiroya, K.; Doi, T. Adv. Synth. Catal. 2010, 352, 2643. (b)
Engle, K. M.; Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132,
14137. (c) Li, B.-J.; Tian, S. -L.; Fang, Z.; Shi, Z.-J. Angew. Chem., Int.
Ed. 2008, 47, 1115. (d) Tsang, W. C. P. R.; Munday, H.; Brasche, G.;
Zhang, N.; Buchwald, S. L. J. Org. Chem. 2008, 73, 7603. (e) Brasche, G.;
Garcıa-Fortanet, J.; Buchwald, S. L. Org. Lett. 2008, 10, 2207.
(12) (a) Shen, Z.; Hong, Y.; He, X.; Mo, W.; Hu, B.; Sun, N.; Hu, X.
Org. Lett. 2010, 12, 552. (b) Wan, Z.-K.; Wacharasindhu, S.; Levins,
C. G.; Lin, M.; Tabei, K.; Mansour, T. S. J. Org. Chem. 2007, 72, 10194.
(c) Leonard, N. J.; Curtin, D. Y. J. Org. Chem. 1946, 11, 349. (d)
Leonard, N. J.; Curtin, D. Y. J. Org. Chem. 1946, 11, 341. (e) Lange,
N. A.; Sheibley, F. E. J. Am. Chem. Soc. 1931, 53, 3867. (f) Szczepan-
ꢀ
kiewicz, W.; Suwinski, J.; Bujok, R. Tetrahedron 2000, 56, 9343.
Org. Lett., Vol. 13, No. 17, 2011
4605