Journal of the American Chemical Society
COMMUNICATION
Table 4. Scope of Monosubstituted Arenesa,b,c
potentially lead to practical new tools for the synthesis of para-
substituted biaryls.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures and
b
characterization of all new compounds; complete ref 7b. This
material is available free of charge via the Internet at http://
pubs.acs.org.
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
We gratefully acknowledge The Scripps Research Institute, the
National Institutes of Health (NIGMS, 1 R01 GM084019-02),
Amgen, Eli Lilly, and Novartis for financial support. We thank
A*STAR for a postdoctoral fellowship (D.L.).
a Unlessotherwisenoted, thereaction conditionswereasfollows: amide1a
(0.2 mmol), Pd(OAc)2 (10 mol %), NFSI (1.5 equiv), DMF (2.0 equiv),
c
arene (2 mL), 70 °C, 48 h. b Isolated yields are given. Regioselectivity
determined by GC analysis (para/meta, no ortho-product was observed) is
shown in parentheses. d 100 °C, 24 h.
’ REFERENCES
(1) (a) Moritani, I.; Fujiwara, Y. Tetrahedron Lett. 1967, 8, 1119.
(b) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633.
(c) Yokota, T.; Tani, M.; Sakaguchi, S.; Ishii, Y. J. Am. Chem. Soc. 2003,
125, 1476. (d) Dams, M.; De Vos, D. E.; Celen, S.; Jacobs, P. A. Angew.
Chem., Int. Ed. 2003, 42, 3512.
(2) For selected reviews, see: (a) Daugulis, O.; Zaitsev, V. G.;
Shabashov, D.; Pham, Q.-N.; Lazareva, A. Synlett 2006, 3382. (b) Dick,
A. R.; Sanford, M. S. Tetrahedron 2006, 62, 2439. (c) Yu, J.-Q.; Giri, R.;
Chen, X. Org. Biomol. Chem. 2006, 4, 4041. (d) Alberico, D.; Scott, M. E.;
Lautens, M. Chem. Rev. 2007, 107, 174. (e) Campeau, L.-C.; Fagnou, K.
Chem. Soc. Rev. 2007, 36, 1058. (f) Chen, X.; Engle, K. M.; Wang, D.-H.;
Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094. (g) Yeung, C. S.; Dong,
V. M. Chem. Rev. 2011, 111, 1215.
(3) (a) Wang, D.-H.; Engle, K. M.; Shi, B.-F.; Yu, J.-Q. Science 2010,
327, 315. (b) Engle, K. M.; Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc.
2010, 132, 14137.
Figure 2. Kinetic isotope effect.
(4) (a) Shi, B.-F.; Maugel, N.; Zhang, Y.-H.; Yu, J.-Q. Angew. Chem.,
Int. Ed. 2008, 47, 4882. (b) Shi, B.-F.; Zhang, Y.-H.; Lam, J. K.; Wang,
D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 460.
(5) For ligand-promoted meta-selective CÀH activation, see: Zhang,
Y.-H.; Shi, B.-F.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 5072.
(6) For para-selective CÀH arylation of electron-rich arenes with
Ph2IBF4/Cu(OTf)2, see: Ciana, C.-L.; Phipps, R. J.; Brandt, J. R.; Meyer,
F. M.; Gaunt, M. J. Angew. Chem., Int. Ed. 2011, 50, 463.
The low selectivity observed with other oxidants such as Na2-
S2O8 seems to suggest that the [ArPd(IV)F] species is par-
10g
tially responsible for selective para-CÀH cleavage. (This statement
holds true only if [ArPd(IV)F] species are formed under these
conditions.) We also isolated around 5% ortho-fluorinated pro-
duct using amide substrate 1a, which serves as evidence for the
formation of an [ArPd(IV)F] intermediate. We have recently
further shown that the fluorination could occur as a major
pathway under suitable conditions in the absence of arene
coupling partners.13b Although direct evidence for the involve-
ment of Pd(IV) complexes in the cleavage of the para-CÀH
bond is lacking, oxidation of Pd(II) to Pd(IV) species by F+ was
previously established as a facile process.15 In addition, CÀH
cleavage byisolated Pt(IV)16a or proposedPd(IV) complexes12,16b
was reported. The significantly lower para-selectivity observed
with the triflamide directing group (eq 1) indicates that the
directing group also has a great impact on the regioselectivity.
In summary, we have developed a CÀH/CÀH coupling of
benzamides with monosubstituted arenes including toluene.
When our amide directing group was used in conjunction with
a bystanding F+ oxidant, high para-selectivity was achieved.
Electron-withdrawing groups such as ketone and cyano are
tolerated on one of the coupling partners. Further development
of this type of reaction to allow the use of 1 equiv of arenes could
(7) (a) Tsuyuki, R. T.; McDonald, M. A. Circulation 2006, 114, 855.
(b) Habashi, J. P.; et al. Science 2006, 312, 117.
(8) For early examples of Pd-catalyzed oxidative ArÀH homo-
coupling, see: (a) Davidson, J. M.; Trigg, C. Chem. Ind. 1966, 457.
(b) Fujiwara, Y.; Moritani, I.; Ikegami, K.; Tanaka, R.; Teranishi, S. Bull.
Chem. Soc. Jpn. 1970, 43, 863. (c) Mukhopadhyay, S.; Rothenberg, G.;
Lando, G.; Agbaria, K.; Kazanci, M.; Sasson, Y. Adv. Synth. Catal. 2001,
343, 455. (d) Okamoto, M.; Yamaji, T. Chem. Lett. 2001, 212.
(9) (a) Itahara, T. J. Chem. Soc., Chem. Commun. 1981, 254. (b) Li,
R.; Jiang, L.; Lu, W. Organometallics 2006, 25, 5973. (c) Stuart, D. R.;
Fagnou, K. Science 2007, 316, 1172. (d) Dwight, T. A.; Rue, N. R.;
Charyk, D.; Josselyn, R.; DeBoef, B. Org. Lett. 2007, 9, 3137. (e) Kawai,
H.; Kobayashi, Y.; Oi, S.; Inoue, Y. Chem. Commun. 2008, 1464.
(f) Potavathri, S.; Dumas, A. S.; Dwight, T. A.; Naumiec, G. R.;
Hammann, J. M.; DeBoef, B. Tetrahedron Lett. 2008, 49, 4050.
(g) Kobayashi, O.; Uraguchi, D.; Yamakawa, T. Org. Lett. 2009,
11, 2679. (h) Xi, P.; Yang, F.; Qin, S.; Zhao, D.; Lan, J.; Gao, G.; Hu,
C.; You, J. J. Am. Chem. Soc. 2010, 132, 1822. (i) Potavathri, S.; Pereira,
K. C.; Gorelsky, S. I.; Pike, A.; LeBris, A. P.; DeBoef, B. J. Am. Chem. Soc.
13866
dx.doi.org/10.1021/ja206572w |J. Am. Chem. Soc. 2011, 133, 13864–13867