Page 3 of 4
ChemComm
DOI: 10.1039/C4CC07643E
† Electronic Supplementary Information (ESI) available: Experimental
50 procedures, characterization data of compounds, 1H and 13 C NMR spectra,
and HPLC charts. See DOI: 10.1039/b000000x/
provided direct access to 3m in 91% ee. When (R)ꢀ1b was used
as catalyst, 3m was obtained in 95% ee (Table 2, entry 13).
Longer reaction time was needed presumably due to the poor
solubility of the corresponding carboxylic acid potassium salt.
Aliphatic αꢀhydroxy acids were also obtained in high yield, albeit
with only moderate to good enantioselectivities (56ꢀ85% ee,
Table 2, entry 14ꢀ16). For more sterically hindered 3,3ꢀdimethylꢀ
2ꢀoxobutanoic acid (2p), the hydrogenation was extremely
sluggish even when 0.2 mol% catalyst was used (Table 2, entry
1
(a) G. M. Coppola and H. F. Schuster, αꢀHydroxy Acids in
Enantioselective Synthesis; VCH: Weinheim, Germany, 1997; (b)
Comprehensive Asymmetric Catalysis; E. N. Jacobsen, A. Pfaltz and
H. Yamamoto, Springer: Berlin, Germany, 1999; Vols. IꢀIII. (c)
Catalysis Asymmetric Synthesis, 2nd ed.; I. Ojima, WileyꢀVCH: New
York, 2000.
5
55
60
2
3
K. Kinbara, Synlett, 2005, 732.
For representative examples, see: (a) H. C. Brown and G. G. Pai, J.
Org. Chem., 1985, 50, 1384; (b) V. K. Singh, Synthesis, 1992, 605;
(c) Z. Wang, B. La, J. M. Fortunak, X.ꢀJ. Meng and G. W. Kabalka,
Tetrahedron Lett., 1998, 39, 5501; (d) P. V. Ramachandran, S. Pitre
and H. C. Brown, J. Org. Chem., 2002, 67, 5315; (e) D. Enders, B. A.
Stöckel and A. Rembiak, Chem. Commun., 2014, 50, 4489; (f) I.
Solodin, Y. Goldberg, G. Zelčans and E. Lukevics, J. Chem. Soc.,
Chem. Commun., 1990, 1321; (g) Y. B. Xiang, K. Snow and M.
Belley, J. Org. Chem., 1993, 58, 993; (h) P. Scafato, L. Leo, S.
Superchi and C. Rosini, Tetrahedron, 2002, 58, 153; (i) C. Pasquier,
J. Eilers, I. Reiners, J. Martens, A. Mortreux and F. Agbossou,
Synlett, 1998, 1162; (j) L. Qiu, F. Y. Kwong, J. Wu, W. H. Lam, S.
Chan, W.ꢀY. Yu, Y.ꢀM. Li, R. Guo, Z. Zhou and A. S. C. Chan, J.
Am. Chem. Soc., 2006, 128, 5955; (k) C.ꢀJ. Wang, X. Sun and X.
Zhang, Synlett, 2006, 1169; (l) J. W. Yang and B. List, Org. Lett.,
2006, 8, 5653; (m) X. Sun, L. Zhou, W. Li and X. Zhang, J. Org.
Chem., 2008, 73, 1143; (n) Q. Meng, Y. Sun, V. Ratovelomananaꢀ
Vidal, J. P. Genêt and Z. Zhang, J. Org. Chem., 2008, 73, 3842; (o)
H. U. Blaser, H. P. Jalett, M. Müller and M. Studer, Catal. Today,
1997, 37, 441; (p) X. Zuo, H. Liu, D. Guo and X. Yang, Tetrahedron,
1999, 55, 7787; (q) M. Studer, H.ꢀU. Blaser and C. Exner, Adv.
Synth. Catal., 2003, 345, 45; (r) L. Xing, F. Du, J.ꢀJ. Liang, Y.ꢀS.
Chen and Q.ꢀL. Zhou, J. Mol. Catal. A: Chem., 2007, 276, 191; (s) T.
Mallat, E. Orglmeister and A. Baiker, Chem. Rev., 2007, 107, 4863.
(a) L. Tang and L. Deng, J. Am. Chem. Soc., 2002, 124, 2870; (b) A.
T. Radosevich, C. Musich and F. D. Toste, J. Am. Chem. Soc., 2005,
127, 1090; (c) A. Sakakura, S. Umemura and K. Ishihara, Synlett,
2009, 1647; (d) S. K. Alamsetti and G. Sekar, Chem. Commun.,
2010, 46, 7235.
For representative examples, see: (a) N. Kanomata and T. Nakata, J.
Am. Chem. Soc., 2000, 122, 4563; (b) D. Zhu, Y. Yang and L. Hua, J.
Org. Chem., 2006, 71, 4202; (c) M. Landwehr, L. Hochrein, C. R.
Otey, A. Kasrayan, J.ꢀE. Backvall and F. H. Arnold, J. Am. Chem.
Soc., 2006, 128, 6058; (d) T. Ema, N. Okita, S. Ide and T. Sakai,
Org. Biomol. Chem., 2007, 5, 1175; (e) R. Kratzer and B. Nidetzky,
Chem. Commun., 2007, 1047; (f) G. A. Applegate, R. W. Cheloha, D.
L. Nelson and D. B. Berkowitz, Chem. Commun., 2011, 47, 2420.
For representative examples, see: (a) A. E. Russel, S. P. Miller and J.
P. Morken, J. Org. Chem., 2000, 65, 8381; (b) K. Ishihara, T. Yano
and M. Fushimi, J. Fluorine Chem., 2008, 129, 994; (c) E. Schmitt, I.
Schiffers and C. Bolm, Tetrahedron Lett., 2009, 50, 3185; (d) P.
Wang, W.ꢀJ. Tao, X.ꢀL. Sun, S. Liao and Y. Tang, J. Am. Chem. Soc.,
2013, 135, 16849.
10 16). Interestingly, the absolute configuration of 3p was opposite
to that of other products.
The fast reaction rate of oꢀchlorobenzoylformic acid (2b)
prompted us to develop a practical preparation of optical pure oꢀ
chloromandelic acid which is a key intermediate for a platelet
15 aggregation inhibitor named Clopidogrel17 with high TON. When
the substrate/catalyst ratio was increased to 50,000 (Scheme 2),
the hydrogenation of 2b completed at room temperature under an
initial hydrogen pressure of 30 atm within 24 h without loss of
enantioselectivity. The ee value of 3b could be upgraded to >99%
20 by crystallization from toluene in 80% yield. This is a promising
procedure for a largeꢀscale or even industrial setting.
65
70
75
80
4
5
85
Scheme 2. Asymmetric hydrogenation of o-chlorobenzoylformic acid with
high TON.
25 Conclusions
90
In summary, we have developed a new efficient and highly
enantioselective direct asymmetric hydrogenation of αꢀketo acids
into optically active αꢀhydroxy acids employing the Ir/SpiroPAP
catalyst. The achieved catalyst performance (ee, TON) indicated
30 that this method might be feasible for the preparation of a series
of chiral αꢀhydroxy acids especially orthoꢀsubstituted αꢀhydroxy
phenylacetic acids in large scale. Further investigations are
focused on the application of this methodology to the synthesis of
chiral pharmaceuticals.
We thank the National Natural Science Foundation of China,
the National Basic Research Program of China (973 Program, No.
2012CB821600), “111” Project of the Ministry of Education of
China (Grant No. B06005) for financial support.
95
6
7
100
105
110
115
35
For representative examples, see: (a) N. Gathergood, W. Zhuang and
K. A. Jørgensen, J. Am. Chem. Soc., 2000, 122, 12517; (b) Y. Yuan,
X. Wang, X. Li and K. Ding, J. Org. Chem., 2004, 69, 146; (c) J.
Majer, P. Kwiatkowski and J. Jurczak, Org. Lett., 2008, 10, 2955; (d)
J. Majer, P. Kwiatkowski and J. Jurczak, Org. Lett., 2009, 11, 4636;
(e) Y. Yamamoto, T. Shirai and N. Miyaura, Chem. Commun., 2012,
48, 2803.
For representative examples, see: (a) Y. Hamashima, D. Sawada, M.
Kanai and M. Shibasaki, J. Am. Chem. Soc., 1999, 121, 2641; (b) N.
Kurono, K. Arai, M. Uemura and T. Ohkuma, Angew. Chem., Int. Ed.,
2008, 47, 6643; (c) W. Wang, X. Liu, L. Lin and X. Feng, Eur. J.
Org. Chem., 2010, 25, 4751; (d) N. Kurono, T. Yoshikawa, M.
Yamasaki and T. Ohkuma, Org. Lett., 2011, 13, 1254.
Notes and references
40 a Zhejiang Jiuzhou Pharmaceutical Co., Ltd., 99 Waisha Road, Jiaojiang
District, Taizhou City, Zhejiang Province, 318000, P. R. China. Fax:
0086ꢀ0571ꢀ87000702; Tel: 0086ꢀ0571ꢀ87000701; Eꢀmail: dqche@zbjz.cn
b State Key Laboratory and Institute of Elementoꢀorganic Chemistry,
Nankai University, Tianjin 300071, P. R. China. Fax: 0086ꢀ022ꢀ
45 23500011; Tel: 0086ꢀ022ꢀ23500011; Eꢀmail: qlzhou@nankai.edu.cn
c Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Tianjin 300071, P. R. China. Fax: 0086ꢀ022ꢀ23500011; Tel:
0086ꢀ022ꢀ23500011.
8
9
(a) J.ꢀR. Kong, M.ꢀY. Ngai and M. J. Krische, J. Am. Chem. Soc.,
2006, 128, 718; (b) C.ꢀW. Cho and M. J. Krische, Org. Lett., 2006, 8,
3873; (c) M.ꢀY. Ngai, J.ꢀR. Kong and M. J. Krische, J. Org. Chem.,
2007, 72, 1063.
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3