S. Daly et al. / Bioorg. Med. Chem. Lett. 21 (2011) 4720–4723
4723
Cl
References and notes
1. Pichereau, S.; Rose, W. E. Expert Opin. Pharmacother. 2010, 11, 3009.
2. Tacconelli, E.; Cataldo, M. A. Int. J. Antimicrob. Agents 2008, 31, 99.
3. Kobayashi, Y.; Ichioka, M.; Hirose, T.; Nagai, K.; Matsumoto, A.; Matsui, H.;
Hanaki, H.; Masuma, R.; Takahashi, Y.; Omura, S.; Sunazuka, T. Bioorg. Med.
Chem. Lett. 2010, 20, 6116.
4. Hossion, A. M. L.; Otsuka, N.; Kandahary, R. K.; Tsuchiya, T.; Ogawa, W.; Iwado,
A.; Zamami, Y.; Sasaki, K. Bioorg. Med. Chem. Lett. 2010, 20, 5349.
5. Hu, L.; Kully, M. L.; Boykin, D. W.; Abood, N. Bioorg. Med. Chem. Lett. 2009, 19,
4626.
6. Dixit, B. C.; Patel, H. M.; Desai, D. J. J. Serb. Chem. Soc. 2007, 72, 119.
7. Jarrahpour, A. A.; Motamedifar, M.; Pakshir, K.; Hadi, N.; Zarei, M. Molecules
2004, 9, 815.
Cl
S
CPBA
DMC
O
S
O
Cl
a)
b)
N
Cl
H
N
7a
H
9
46%
Cl
O
Cl
8. Ozturk, A.; Abdullah, M. I. Sci. Total Environ. 2006, 358, 137.
9. Joshi, K. C.; Pathak, V. N.; Arya, P.; Chand, P. Agric. Biol. Chem. 1979, 43, 171.
10. Srivastava, N.; Sengupta, A. K. Indian J. Chem. 1983, 22B, 707.
11. Jackson, A. H.; Prasitpan, N.; Shannon, P. V. R.; Tinker, A. C. J. Chem. Soc., Perkin
Trans. 1 1987, 2543.
12. Doyle, M. P.; Dellaria, J. F.; Siegfried, B.; Bishop, S. W. J. Org. Chem. 1977, 42,
3494.
13. Molinaro, C.; Mowat, J.; Gosselin, F.; O’Shea, P. D.; Marcoux, J.-F.; Angelaud, R.;
Davies, I. W. J. Org. Chem. 2007, 72, 1856.
O
3
+
150 oC
Cl
Cl
N
H
10
23%
14. Raucher, S.; Koolpe, G. A. J. Org. Chem. 1983, 48, 2066.
15. Grimster, N. P.; Gauntlett, C.; Godfrey, C. R. A.; Gaunt, M. J. Angew. Chem. Int. Ed.
2005, 44, 3125.
Scheme 6.
16. As our work was in progress, a similar synthesis of carbazoles, utilizing the
sequential Heck/electrocyclization process, appeared in the literature: Hussain,
M.; Tung, D. T.; Langer, P. Synlett 2009, 1822.
17. De Martino, G.; Edler, M. C.; La Regina, G.; Coluccia, A.; Barbera, M. C.; Barrow,
D.; Nicholson, R. I.; Chiosis, G.; Brancale, A.; Hamel, E.; Artico, M.; Silvestri, R. J.
Med. Chem. 2006, 49, 947.
compounds 1a and 1b exhibited modest levels of activity, which is
consistent with an earlier report of antifungal activities associated
with 3-phenylazoindole.25 Importantly, we found that the antibac-
terial properties of our promising analogues 7a–c and 8a–g are
paralleled with an antiproliferative effect against cultured human
cancer cells, such as HeLa (Table 1). These findings warrant future
rodent studies, in which the toxicity of these compounds can be
properly evaluated.
In conclusion, an unprecedented reaction of indole with aryldi-
azonium salts affords 2-aryl-3-(arylazo)indoles, which display
promising anti-MRSA and anti-LLVRE activities. The successful bio-
isosteric substitution of the labile azo group with ether oxygen and
thioether sulfur atoms indicates that the azo functionality is not re-
quired for activity and, thus, the potential metabolic instability of
these indole-based antibacterial agents is not of concern. Experi-
ments aimed at elucidating the mode of action of these compounds
in gram-positive bacteria are underway and will be reported in due
course.
18. Inion, H.; De Vogelaer, H.; Descamps, M.; Bauthier, J.; Colot, M.; Richard, J.;
Charlier, R. Eur. J. Med. Chem. 1977, 12, 483.
19. Selected synthetic procedure (2a–d): To a solution of indole (0.001 mol) in
dioxane (2 mL) were added a solution of sodium acetate (0.004 mol) in water
(0.5 mL) and an appropriate diazonium tetrafluoroborate (0.004 mol) at room
temperature. The reaction mixture was stirred at room temperature for 6 h and
then water was added (10 mL). After the extraction with AcOEt, the organic
layer was dried (Na2SO4) and the solvent was removed under reduced
pressure. The product was purified by flash chromatography on silica gel
(hexane–ethyl acetate, 15:1). Selected characterization data (2a): 56%; 1H NMR
(CDCl3) d 8.60–8.59 (m, 1H), 7.90–7.87 (d, J = 8.52 Hz, 2H), 7.80–7.77 (d,
J = 8.52 Hz, 2H), 7.50–7.47 (d, J = 8.52 Hz, 2H), 7.46–7.43 (d, J = 8.79 Hz, 2H),
7.36–7.31 (m, 3H); 13C NMR (CDCl3) d 135.7, 134.8, 132.7, 130.5, 129.3, 129.2,
125.1, 123.8, 123.3, 119.8, 111.2; HRMS m/z (ESI) calcd for C20H14Cl2N3 (M+H+)
366.0565, found 366.0557.
20. Forbes, B. A.; Sahm, D. F.; Weissfeld, A. S. Bailey
Microbiology, 10th ed; Mosby: St. Louis, 1998.
& Scott’s Diagnostic
21. Jett, B. D.; Hatter, K. L.; Huycke, M. M.; Gilmore, M. S. Biotechniques 1997, 23,
648.
22. Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID
European Committee for Antimicrobial Susceptibility Testing (EUCAST) Clin.
Microbiol. Infect. 2008, 14, 398.
23. Mohtar, M.; Johari, S. A.; Li, A. R.; Isa, M. M.; Mustafa, S.; Ali, A. M.; Basri, D. F.
Curr. Microbiol. 2009, 59, 181.
24. Evdokimov, N. M.; Van slambrouck, S.; Heffeter, P.; Tu, L.; Le Clave, B.; Lamoral-
Theys, D.; Hooten, C. J.; Uglinskii, P. Y.; Rogelji, S.; Kiss, R.; Steelant, W. F. A.;
Berger, W.; Yang, J. J.; Bologa, C. J.; Kornienko, A.; Magedov, I. V. J. Med. Chem.
2011, 54, 2012.
Acknowledgments
US National Institutes of Health (Grants RR-16480 and CA-
135579) are gratefully acknowledged for financial support of this
work. We are grateful to the reviewer of this letter for pointing
out the similarity of our proposed mechanism to the metal-free
Meerwein arylation processes.
25. Dekker, W. H.; Selling, H. A.; Overeem, J. C. J. Agric. Food Chem. 1975, 23, 785.