thermodynamic control, the formation of a matching net
comprising macrocycles and links around the scaffold. These
two components would be inseparable from each other prior
to cleavage of at least one covalent bond somewhere in the
molecular architecture. For example, the attempted departure
of one macrocycle of the net from the scaffold would
necessitate the passing of another macrocycle over the core
of the scaffold which would be impossible for steric reasons.
One of the simplest examples is portrayed in Figure 1 which
scaffold and then demonstrate that it will form a 2:1
complexsnamely, a [3]pseudorotaxaneswhich can subse-
quently be functionalized in order that the rigid linkers can
be introduced during the covalent modification of the initially
formed supermolecule. In this manner, the macrocycles can
be covalently linked together after self-assembly of the [3]-
pseudorotaxane, thus trapping the scaffoldswhich templates
the formation of the netsinside the net.
The well-established11 recognition motif that leads to the
threading of secondary dialkylammonium centers through
crown ethers, such as dibenzo[24]crown-8 (DB24C8), was
chosen as the starting point for this research. Herein, we (a)
report the synthesis (Scheme 1) of a bisammonium scaffold
Scheme 1a
Figure 1. A schematic representation of the approach to be taken
in the construction of a new class of interlocked molecular
compounds. The “+” sign on the scaffold represents NH2+ centers,
and the rectangles introduced at step A are crown ethers with [24]-
crown-8 constitutions. In step A, noncovalent bonding leads to
complexes (pseudorotaxanes) that are covalently linked in step B.
schematically illustrates the formation of an interlocked
molecule containing (i) a linear rigid scaffold comprising a
rod with a centrally located bulky core and (ii) a net-like
macropolycycle built of two macrocycles joined by two rigid
linkers. The first step toward making such an interlocked
molecular compound is to identify and synthesize a ditopic
a Reagents and conditions: i, PhMe, reflux; ii, NaBH4, MeOH,
H2O, rt; iii, HCl, H2O, rt; iv, NH4PF6, H2O, rt.
(3) A rotaxane is a molecule that comprises a dumbbell-shaped compo-
nent on which one or more rings are trapped mechanically by virtue of the
bulky nature of the dumbbell’s terminal groups. (a) Anelli, P. L.; Spencer,
N.; Stoddart, J. F. J. Am. Chem. Soc. 1991, 113, 5131-5133. (b) Kolchinski,
A. G.; Alcock, N. W.; Roesner, R. A.; Busch, D. H. Chem. Commun. 1998,
1437-1438. (c) Clegg, W.; Gimenez-Saiz, C.; Leigh, D. A.; Murphy, A.;
Slawin, A. M. Z.; Teat, S. J. J. Am. Chem. Soc. 1999, 121, 4124-4129. (d)
Kawasaki, H.; Kihara, N.; Takata, T. Chem. Lett. 1999, 1015-1016. (e)
Raehm, L.; Kern, J.-M.; Sauvage, J.-P. Chem. Eur. J. 1999, 5, 3310-3317.
(f) Seel, C.; Vo¨gtle, F. Chem. Eur. J. 2000, 6, 21-24. (g) Loeb, S. J.;
Wisner, J. A. Chem. Commun. 2000, 845-846.
(4) Jasat, A.; Sherman, J. C. Chem. ReV. 1999, 99, 931-967.
(5) (a) Wasserman, E. J. Am. Chem. Soc. 1960, 82, 4433-4434. (b)
Harrison, I. T.; Harrison, S. J. Am. Chem. Soc. 1967, 89, 5723-5724.
(6) Schill, G.; Lu¨ttringhaus, A. Angew. Chem., Int. Ed. Engl. 1964, 3,
546-547.
(7) (a) Sauvage, J.-P. Acc. Chem. Res. 1998, 31, 611-619. (b) Try, A.
C.; Harding, M. M.; Hamilton, D. G.; Sanders, J. K. M. Chem. Commun.
1998, 723-724. (c) Fujita, M. Acc. Chem. Res. 1999, 32, 53-61.
(8) (a) Glink, P. T.; Schiavo, C.; Stoddart, J. F.; Williams, D. J. Chem.
Commun. 1996, 1483-1490. (b) Philp, D.; Stoddart, J. F. Angew. Chem.,
Int. Ed. Engl. 1996, 35, 1154-1196. (c) Fyfe, M. C. T.; Stoddart, J. F.
Acc. Chem. Res. 1997, 30, 393-401. (d) Vo¨gtle, F.; Safarowsky, O.; Heim,
C.; Affeld, A.; Braun, O.; Mohry, A. Pure Appl. Chem. 1999, 71, 247-
251.
based on a 9,10-anthracenyl core and (b) demonstrate its
ability to form a [3]pseudorotaxane with DB24C8, both in
the solid state and in solution.
9,10-Bis(aminomethyl)anthracene12 was condensed with
2 equiv of benzaldehyde. The resulting diimine was reduced
to yield the diamine which was protonated and subjected to
13
counterion exchange to give the salt 1-H2‚2PF6 as a
crystalline compound. X-ray quality single crystals of the
[3]pseudorotaxane14 [(DB24C8)2‚1-H2][PF6]2 were obtained
by vapor diffusion of i-Pr2O into a 2:1 solution (CH2Cl2/
(11) (a) Kolchinski, A. G.; Busch, D. H.; Alcock, N. W. J. Chem. Soc.,
Chem. Commun. 1995, 1289-1291. (b) Ashton, P. R.; Chrystal, E. J. T.;
Glink, P. T.; Menzer, S.; Schiavo, C.; Spencer, N.; Stoddart, J. F.; Tasker.
P. A.; White, A. J. P.; Williams, D. J. Chem. Eur. J. 1996, 2, 709-728. (c)
Fyfe, M. C. T.; Stoddart, J. F. AdV. Supramol. Chem. 1999, 5, 1-53. (d)
Yamaguchi, N.; Gibson, H. W. Angew. Chem., Int. Ed. 1999, 38, 143-
147.
(9) (a) Amabilino, D. B.; Ashton, P. R.; Pe´rez-Garc´ıa, L.; Stoddart, J. F.
Angew. Chem., Int. Ed. Engl. 1995, 34, 2378-2380. (b) Rowan, S. J.;
Stoddart, J. F. J. Am. Chem. Soc. 2000, 122, 164-165.
(12) Morgan, H.; Fukushima, H.; Taylor, D. M. J. Polym. Sci.: Part A:
Polym. Chem. 1994, 32, 1331-1340.
(13) Synthetic details for, and characterization data relating to compounds
1 and 1-H2‚2PF6, can be found in the Supporting Information.
(14) The crystalline 2:1 complex was also examined using FABMS. In
addition to a major peak at m/z 865, corresponding to a [2]pseudorotaxane
(10) (a) Fujita, M.; Ibukuro, F.; Hagihara, H.; Ogura, K. Nature 1994,
367, 720-723. (b) Kidd, T. J.; Leigh, D. A.; Wilson, A. J. J. Am. Chem.
Soc. 1999, 121, 1599-1600. (c) Cantrill, S. J.; Rowan, S. J.; Stoddart, J. F.
Org. Lett. 1999, 1, 1363-1366. (d) Rowan, S. J.; Stoddart, J. F. Org. Lett.
1999, 1, 1913-1916. (e) Furusho, Y.; Hasegawa, T.; Tsuboi, A.; Kihara,
N.; Takata, T. Chem. Lett. 2000, 18-19. (f) Chichak, K.; Walsh, M. C.;
Branda, N. R. Chem. Commun. 2000, 847-848. (g) Jeong, K.-S.; Choi, J.
S.; Chang, S.-Y.; Chang, H.-Y. Angew. Chem., Int. Ed. 2000, 39, 1692-
1695. (h) Ro, S.; Rowan, S. J.; Pease, A. R.; Cram, D. J.; Stoddart, J. F.
Org. Lett. 2000, 2, 2411-2414.
-
that has lost two of its PF6 counterions, there is a significant peak at m/z
-
1459, corresponding to the [3]pseudorotaxane with the loss of one PF6
counterion, as well as a prominent peak at m/z 657, representing the doubly
charged [3]pseudorotaxane without any counterions. A similar fragmentation
pattern has been reported for a related [3]pseudorotaxane in which the
2+
9,10-anthracenyl core of 1-H2 is replaced by a p-phenylene unit. See:
ref 11b.
2944
Org. Lett., Vol. 2, No. 19, 2000