Inorganic Chemistry
ARTICLE
’ AUTHOR INFORMATION
(26) Sanchez-Cano, C.; Huxley, M.; Ducani, C.; Hamad, A. E.;
Browning, M. J.; Navarro-Ranninger, C.; Quiroga, A. G.; Rodger, A.;
Hannon, M. J. Dalton Trans. 2010, 39, 11365–11374.
(27) Ruiz, J.; Rodríguez, V.; Cutillas, N.; Espinosa, A.; Hannon, M. J.
J. Inorg. Biochem. 2011, 105, 525–531.
Corresponding Author
*E-mail: jruiz@um.es; fax: +34 868 884148; tel: +34 868 887455.
(28) Al-Duaij, Y. B.; Davies, D. L.; Griffith, G. A.; Sing, K. Organo-
metallics 2009, 28, 433–440.
’ ACKNOWLEDGMENT
(29) Djukic, J.-P.; et al. Organometallics 2004, 23, 5757–5767.
(30) (a) Mayer, I. Chem. Phys. Lett. 1983, 97, 270–274. (b) Mayer, I.
Int. J. Quantum Chem. 1984, 26, 151–154. (c) Mayer, I. Theor. Chim. Acta
1985, 67, 315–322.(d) Mayer, I. In Modelling of Structure and Properties
of Molecules; Maksic, Z. B., Ed.; John Wiley & Sons: New York, 1987.
(e) Bridgeman, A. J.; Cavigliasso, G.; Ireland, L. R.; Rothery, J. J. Chem.
Soc., Dalton Trans. 2001, 2095–2108.
(31) Bader, R. F. W. In Atoms in Molecules: A Quantum Theory;
Oxford University Press: Oxford, 1990.
(32) Distance between the metal ion and its projection onto the
arene mean plane.
(33) Loh, S. Y.; Mistry, P.; Kelland, L. R.; Abel, G.; Harrap, K. R. Br. J.
Cancer 1992, 66, 1109–1115.
This work was supported by the MICINN-Spain (Projects
CTQ2008-02178 and CTQ2008-01402) and Fundaciꢀon Seneca
(Projects 08666/PI/08 and 04509/GERM/06 (Programa de
Ayudas a Grupos de Excelencia de la Regiꢀon de Murcia, Plan
Regional de Ciencia y Tecnología 2007/2010)). We wish to
thank the Supercomputation Center at “Fundaciꢀon Parque
Científico de Murcia” (FPCMur) for their technical support
and the computational resources used in the supercomputer Ben-
Arabí. We also knowledge Dr. J. Contreras-García for technical
advice with the NCIplot analysis.
(34) Goddard, P. M; Orr, R. M.; Valenti, M. R.; Barnard, C. F.;
Murrer, B. A.; Kelland, L. R.; Harrap, K. R. Anticancer Res. 1996,
16, 33–38.
(35) Behrens, B. C.; Hamilton, T. C.; Masuda, H.; Grotzinger, K. R.;
Whang-Peng, J.; Louie, K. G.; Knutsen, T.; McKoy, W. M.; Young, R. C.;
Ozols, R. F. Cancer Res. 1987, 47, 414–418.
(36) Kelland, L. R.; Barnard, C. F. J.; Mellish, K. J.; Jones, M.;
Goddard, P. M.; Valenti, M.; Bryant, A.; Murrer, B. A.; Harrap, K. R.
Cancer Res. 1994, 54, 5618–5622.
’ REFERENCES
(1) Jakupec, M. A.; Galanski, M.; Arion, V. B.; Hartinger, C. G.;
Keppler, B. K. Dalton Trans. 2008, 183–194.
(2) Klein, A. V.; Hambley, T. W. Chem. Rev. 2009, 109, 4911–4920.
(3) Jung, Y. W.; Lippard, S. J. Chem. Rev. 2007, 107, 1387–1407.
(4) Kelland, L. Nat. Rev. Cancer 2007, 7, 573–584.
(5) O’Dwyer, P. J.; Stevenson, J. P.; Johnson, S. W. In Cisplatin.
Chemistry and Biochemistry of a Leading Anticancer Drug; Lippert, B., Ed.;
Wiley-VCH: Weinheim, Germany, 1999; p 3172.
(37) Ushay, H. M.; Tullius, T. D.; Lippard, S. J. Biochemistry 1981,
(6) Wang, D.; Lippard, S. J. Nat. Rev. Drug Discovery 2005, 4, 307–320.
(7) Hannon, M. J. Pure Appl. Chem. 2007, 79, 2243–2261.
(8) Sꢀanchez-Cano, C.; Hannon, M. J. Dalton Trans. 2009,
10702–10711.
(9) van Zutphen, S.; Reedijk, J. Coord. Chem. Rev. 2005, 249,
2845–2853.
(10) Gasser, G.; Ott, I.; Metzler-Nolte, N. J. Med. Chem. 2011, 54, 3–25.
(11) Lentz, F.; Drescher, A.; Lindauer, A.; Henke, M.; Hilger, R. A.;
Hartinger, C. G.; Scheulen, M. E.; Christian, D.; Keppler, B. K.; Jaehde,
U. Anti-Cancer Drugs 2009, 20, 97–103.
(12) Alessio, E.; Mestroni, G.; Bergamo, A.; Sava, G. Met. Ions Biol.
Syst. 2004, 42, 323.
(13) Bruijnincx, P. C. A.; Sadler, P. J. Curr. Opin. Chem. Biol. 2008,
12, 197–206.
(14) Bruijnincx, P. C. A.; Sadler, P. J. Adv. Inorg. Chem. 2009,
61, 1–62.
(15) Liu, H.-K.; Sadler, P. J. Acc. Chem. Res. 2011, 44, 349–359.
(16) Dyson, P. J.; Sava, G. Dalton Trans. 2006, 16, 1929–1933.
(17) Hartinger, C.; Dyson, P. J. Chem. Soc. Rev. 2009, 38, 391–401.
(18) Ang, W. H.; Parker, L. J.; De Luca, A.; Juillerat-Jeanneret, L.;
Morton, C. J.; Lo Bello, M.; Parker, M. W.; Dyson, P. J. Angew. Chem., Int.
Ed. 2009, 48, 3854–3857.
(19) Petrak, K. Drug Discovery Today 2005, 10, 1667.
(20) Jackson, A; Davis, J.; Pither, R. J.; Rodger, A.; Hannon, M. J.
Inorg. Chem. 2001, 40, 3964–3973.
(21) Hannon, M. J.; Green, P. S.; Fisher, D. M.; Derrick, P. J.; Beck,
J. L.; Watt, S. J.; Ralph, S. F.; Sheil, M. M.; Barker, P. R.; Alcock, N. W.;
Price, R. J.; Sanders, K. J.; Pither, R; Davis, J.; Rodger, A. Chem.—Eur. J.
2006, 12, 8000–8013.
(22) Sꢀanchez-Cano, C.; Hannon, M. J. Dalton Trans. 2009,
38, 10765–10773.
(23) Top, S.; Vessiꢁeres, A.; Cabestaing, C.; Laios, I.; Leclercq, G.;
Provot, C.; Jaouen, G. J. Organomet. Chem. 2001, 637, 500–506.
(24) Vessiꢁeres, A.; Top, S.; Pigeon, P.; Hillard, E. A.; Boubeker, L.;
Spera, D.; Jaouen, G. J. Med. Chem. 2005, 48, 3937–3940.
(25) Huxley, M.; Sanchez-Cano, C.; Browning, M. J.; Navarro-
Ranninger, C.; Quiroga, A. G.; Rodger, A.; Hannon, M. J. Dalton Trans.
2010, 39, 11353–11364.
20, 3744–3748.
(38) η6-p-Cymene-Ru(II) bond (dRu
= 1.727 Å; ΣMBO =
arene
2.531; ΣF(rc) = 17.96 ꢁ 10ꢀ2 e/a0 ; εave3 r3 3= 0.649 for 2 BCPs). Two
3
bonds with ppy ligand at C atom (dRuꢀC = 2.051 Å; MBO = 0.983; F(rc)
= 13.18 ꢁ 10ꢀ2 e/a0 ) and N atom (dRuꢀN = 2.089 Å; MBO = 0.717;
3
3
F(rc) = 10.05 ꢁ 10ꢀ2 e/a0 ).
(39) (a) Qui~nonero, D.; Garau, C.; Rotger, C.; Frontera, A.;
Ballester, P.; Costa, A.; Deyꢁa, P. M. Angew. Chem., Int. Ed. 2002,
41, 3389–3392. (b) Frontera, A.; Gamez, P.; Mascal, M.; Mooibroek,
T. J.; Reedijk, J. Angew. Chem., Int. Ed. 2011in press.
(40) Escudero, D.; Frontera, A.; Qui~nonero, D.; Deyꢁa, P. M. J.
Comput. Chem. 2009, 30, 75–82.
(41) (a) Johnson, E. R.; Keinan, S.; Mori-Sꢀanchez, P.; Contreras
García, J.; Cohen, A. J.; Yang, W. J. Am. Chem. Soc. 2010,
132, 6498–6506. (b) Contreras García, J.; Johnson, E. R.; Keinan, S.;
Chaudret, R.; Piquemal, J.-P.; Beratan, D. N.; Yang, W. J. Chem. Theory
Comput. 2011, 7, 625–632.
(42) Neese, F. ORCA, Version 2.8.0; Universit€at Bonn: Bonn,
Germany, 2010. An ab initio, density functional, and semiempirical
(43) Tight convergence criteria for optimizations in ORCA: energy
change 1.0 ꢁ 10ꢀ6 hartree; maximum gradient 1.0 ꢁ 10ꢀ4 hartree/a0;
rms gradient 3.0 ꢁ 10ꢀ5 hartree/a0; maximum displacement 1.0 ꢁ 10ꢀ3
a0; rms displacement 6.0 ꢁ 10ꢀ4 a0.
(44) (a) Becke, A. D. Phys. Rev. A: At., Mol., Opt. Phys. 1988,
38, 3098–3100. (b) Perdew, J. P. Phys. Rev. B: Condens. Matter Mater.
Phys. 1986, 33, 8822–8824.
€
(45) (a) Eichkorn, K.; Treutler, O.; Ohm, H.; H€aser, M.; Ahlrichs, R.
Chem. Phys. Lett. 1995, 240, 283–289. (b) Eichkorn, K.; Weigend, F.;
Treutler, O.; Ahlrichs, R. Theor. Chem. Acc. 1997, 97, 119–124.
(c) Weigend, F.; H€aser, M.; Patzelt, H.; Ahlrichs, R. Chem. Phys. Lett.
1998, 294, 143–152.
(46) Schaefer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992,
97, 2571–2577.
(47) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005,
7, 3297–3305.
(48) Andrae, D.; H€aussermann, U.; Dolg, M.; Stoll, H.; Preuss, H.
Theor. Chim. Acta 1990, 77, 123–141.ECP parameters for Ru [SD(28,
9170
dx.doi.org/10.1021/ic201388n |Inorg. Chem. 2011, 50, 9164–9171