Organic Letters
Letter
detected the peak characteristic of Cu(I) at 932.5 eV (see
Scheme 5).19 We found that the maximum absorption peak of
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Scheme 5. X-ray Photoelectron Spectrum
Funding
We are grateful for financial support from the NSFC (No.
21572090 and 21871123) and the Fundamental Research
Funds for the Central Universities (lzujbky-2017-k05).
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Prof. Nan Zheng (Department of Chemistry and
Biochemistry, University of Arkansas, United States) and Prof.
Hao Chen (Department of Chemistry and Biochemistry, Ohio
University, United States) for helpful discussions in exper-
imental mechanism.
eosin Y was increased and slightly blue-shifted with progressive
addition of Cu(OAc)2 and a new reduction peak at 0.88 V was
detected in acetonitrile solution containing Cu(OAc)2 and
eosin Y by cyclic voltammograms; this may contribute to the
chelation between copper(II) ions and the eosin Y (see the
been detected by FTIR. The 1752.19 cm−1 resonance
(carbonyl group) of eosin Y disappeared with the addition of
plausible that Cu(I) and the eosin Y radical cation could
simultaneously arise from the inner-sphere electron transfer of
the Cu(OAc)2−eosin Y complex.20
Xanthenes dyes have been widely used as organo-photo-
catalysts in visible-light driven synthetic transformations.12,21
In stark contrast, the redox abilities of these dyes in the ground
state were greatly ignored. The newly developed eosin Y−
Cu(OAc)2 system allows the [3 + 2] cyclization of vinyl azides
with KSAs and reveals real-world practical advantages
compared to the eosin Y based photoredox system, such as
the photo byproducts 2H-azirines are no longer produced.
With this system, the desired ene-γ-lactams were obtained
smoothly at room temperature. It is also the first report on
exploring xanthene dyes as the redox catalyst in thermal
reactions. Further expansions of dye-catalyzed thermal
reactions and full disclosure of the mechanism are now in
progress.
REFERENCES
■
(1) (a) Stump, C. A.; Quigley, A. G.; Theberge, C. R.; Wood, M. R.
CGRP Receptor Antagonists. U.S. Patent 0,275,017, Sep 18, 2014.
(b) Lin, W.-H.; Ye, Y.; Xu, R.-S. J. Nat. Prod. 1992, 55, 571−576.
(c) Davies, S. G.; Dixon, D. J.; Doisneau, G. J.-M.; Prodger, J. C.;
Sanganee, H. Tetrahedron: Asymmetry 2002, 13, 647−658. (d) Feling,
R. H.; Buchanan, G. O.; Mincer, T. J.; Kauffman, C. A.; Jensen, P. R.;
Fenical, W. Angew. Chem., Int. Ed. 2003, 42, 355−357. (e) Liu, H.;
He, X.; Phillips, D.; Zhu, X.; Yang, K.; Liu, T.; Wu, B.; Xie, Y.;
Nguyen, T. N.; Wang, X. Compounds and Compositions as Inhibitors
of Cannabinoid Receptor Activity. WO2008076754, June 26, 2008.
(f) Dmitriev, M. V.; Silaichev, P. S.; Makhmudov, R. R.; Maslivets, A.
N. Ethyl 5-alkyl-7,7-dimethyl-2’,9,11-trioxo-5′-phenyl-
1’,2’,5,6,7,8,9,11-octahydrospiro {indeno[1,2-b]quinoline-10,3′-pyr-
rol}-4’-carboxylates and method for preparing them. RU 2485120,
Jun 20, 2013.
(2) (a) Yuan, Q. J.; Liu, D. l.; Zhang, W. B. Org. Lett. 2017, 19,
1144−1147. (b) De Vries, J. G.; Elsevier, C. J., Eds. Handbook of
Homogeneous Hydrogenation; Wiley-VCH: Weinheim, 2007. (c) Xie,
J.-H.; Zhu, S.-F.; Zhou, Q.-L. Chem. Rev. 2011, 111, 1713−1760.
(d) Chen, J.; Zhang, Z.; Liu, D.; Zhang, W. Angew. Chem., Int. Ed.
2016, 55, 8444−8447. (e) Pelkey, E. T.; Pelkey, S. J.; Greger, J. G.
Adv. Heterocycl. Chem. 2015, 115, 151−285.
(3) (a) Kalaitzakis, D.; Triantafyllakis, M.; Ioannou, G. I.;
Vassilikogiannakis, G. Angew. Chem., Int. Ed. 2017, 56, 4020−4023.
(b) Kalaitzakis, D.; Kouridaki, A.; Noutsias, D.; Montagnon, T.;
Vassilikogiannakis, G. Angew. Chem., Int. Ed. 2015, 54, 6283−6287.
(4) (a) Kalaitzakis, D.; Sofiadis, M.; Triantafyllakis, M.; Daskalakis,
K.; Vassilikogiannakis, G. Org. Lett. 2018, 20, 1146−1149.
(b) Donslund, B. S.; Johansen, T. K.; Poulsen, P. H.; Halskov, K.
S.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2015, 54, 13860−13874.
(5) (a) Kalaitzakis, D.; Montagnon, T.; Antonatou, E.; Bardaj, N.;
Vassilikogiannakis, G. Chem. - Eur. J. 2013, 19, 10119−10123.
(b) Kalaitzakis, D.; Montagnon, T.; Antonatou, E.; Vassilikogiannakis,
G. Org. Lett. 2013, 15, 3714−3717. (c) Kalaitzakis, D.; Antonatou, E.;
Vassilikogiannakis, G. Chem. Commun. 2014, 50, 400−402.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
Detailed experimental procedures, characterization of
new compounds, UV−vis, IR, XPS, and NMR spectra,
Accession Codes
(6) (a) Wasserman, H. H.; Liberles, A. J. Am. Chem. Soc. 1960, 82,
2086−2086. (b) Moon, M. W. J. Org. Chem. 1977, 42, 2219−2223.
(7) (a) Rao, H.; Parkash, S. Indian J. Heter. Chem. 2006, 15, 331−
334. (b) Allan, G. M.; Vicker, N.; Lawrence, H. R.; Tutill, H. J.; Day,
J. M.; Huchet, M.; Ferrandis, E.; Reed, M. J.; Purohit, A.; L Potter, B.
V. Bioorg. Med. Chem. 2008, 16, 4438−4456. (c) Lhommet, G.;
CCDC 1868712 (3a) contains the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
́
́
́
Freville, S.; Thuy, V.; Petit, H.; P Celerier, J. Synth. Commun. 1996,
26, 3897−3901.
D
Org. Lett. XXXX, XXX, XXX−XXX