378 Letters in Organic Chemistry, 2011, Vol. 8, No. 6
Bouraiou et al.
Trisubstituted 3-Hydroxychromone Derivatives as Fluorophores for
Live-Cell Imaging. Chem. Eur. J. 2009, 15(37), 9417-9423. (d)
Prakash, O.; Kumar, R.; Sehrawat, R. Synthesis and antibacterial
activity of some new 2,3-dimethoxy-3-hydroxy-2-(1-phenyl-3-aryl-
4-pyrazolyl)chromanones. Eur. J. Med. Chem. 2009, 44(4), 1763-
1767. (e) Arai, M. A.; Sato, M.; Sawada, K.; Hosoya, T.; Ishibashi,
M. Efficient Synthesis of Chromone and Flavonoid Derivatives
with Diverse Heterocyclic Units. Chem. Asian J. 2008, 3(12),
2056-2064.
In conclusion, as demonstrated herein, the approaches
developed in this work allow an easy and efficient access to
structural analogs of flavonols and flavanones combining
these important substructures with quinolyl moieties. Further
biological evaluation of these compounds is currently
underway and will be reported in due course.
[7]
(a) Dietrich, S. A.; Lindauer, R.; Stierlin, C.; Gertsch, J.; Matesanz,
R.; Notararigo, S.; Diaz, J. F.; Altmann, K.-H. Epothilone
Analogues with Benzimidazole and Quinoline Side Chains:
Chemical Synthesis, Antiproliferative Activity, and Interactions
with Tubulin. Chem. Eur. J. 2009, 15(39), 10144-10157. (b)
Rodriguez Sarmiento, R. M.; Nettekoven, M. H.; Taylor, S.;
Plancher, J.-M.; Richter, H.; Roche, O. Selective naphthalene H3
receptor inverse agonists with reduced potential to induce
phospholipidosis and their quinoline analogs. Bioorg. Med. Chem.
Lett. 2009, 19(15), 4495-4500. (c) Wei, L.; Zhang, Z.-W.; Wang,
S.-X.; Ren, S.-M.; Jiang, T. Synthesis and Analysis of Potential
DNA Intercalators Containing Quinoline–Glucose Hybrids. Chem.
Biol. Drug Des. 2009, 74(1), 80-86. (d) Adlard, P. A.; Cherny, R.
A.; Finkelstein, D. I.; Gautier, E.; Robb, E.; Cortes, M.; Volitakis,
I.; Liu, X.; Smith, J. P.; Perez, K.; Laughton, K.; Li, Q.-X.;
Charman, S. A.; Nicolazzo, J. A.; Wilkins, S.; Deleva, K.; Lynch,
T.; Kok, G.; Ritchie, C. W.; Tanzi, R. E.; Cappai, R.; Masters, C.
L.; Barnham, K. J.; Bush, A. I. Rapid Restoration of Cognition in
Alzheimer's Transgenic Mice with 8-Hydroxy Quinoline Analogs
Is Associated with Decreased Interstitial Aꢀ. Neuron 2008, 59, 43-
55. (e) Kouznetsov, V. V.; Gomez-Barrio, A. Recent developments
in the design and synthesis of hybrid molecules basedon
aminoquinoline ring and their antiplasmodial evaluation. Eur. J.
Med. Chem. 2009, 44(8), 3091-3113. (f) Ma, Z.; Hano, Y.;
Nomura, T.; Chen, Y. Novel quinazoline–quinoline alkaloids with
cytotoxic and DNA topoisomerase II inhibitory activities. Bioorg.
Med. Chem. Lett. 2004, 14(5), 1193-1196. (g) Shaw, A.; Krell, K.
D. Peptide leukotrienes: current status of research. J. Med. Chem.
1991, 34(4), 1235-1242.
ACKNOWLEDGMENT
We thank MESRS, Algeria, for the financial support.
REFERENCES AND NOTES
[1]
Harborne, J. B.; Baxter, H. The Handbook of Natural Flavonoids,
Eds, John Wiley and Sons, Chichester, UK, 1999.
[2]
(a) Havsteen, B. Flavonoids, a class of natural products of high
pharmacological potency. Biochem. Pharmacol. 1983, 32(7), 1141-
1148. (b) Terao, J.; Piskula, M.; Yao, Q. Protective Effect of
Epicatechin, Epicatechin Gallate, and Quercetin on Lipid
Peroxidation in Phospholipid Bilayers. Arch. Biochem. Biophys.
1994, 308(1), 278-284. (c) Metodiewa, D.; Jaiswal, A. K.; Cenas,
N.; Dickancait, E.; Segura-Aguilar, J. Quercetin may act as a
cytotoxic prooxidant after its metabolic activation to semiquinone
and quinoidal product. Free Radical Biol. Med. 1999, 26(1-2), 107-
116.
[3]
(a) Cazarolli, L. H.; Zanatta, L.; Alberton, E. H.; Figueiredo M. S.;
Folador, P.; Damazio, R. G.; Pizzolatti, M. G.; Silva, F. R.
Flavonoids: Prospective Drug Candidates. Mini Rev. Med. Chem.
2008, 8(13), 1429-1440. (b) Andersen Ø. M.; Markham K. R.
Flavonoids, Chemistry, Biochemistry and Applications,. Eds, CRC
Press/Taylor & Francis, Boca Raton. 2006. (c) Grotewold, E. The
Science of Flavonoids, Ed, Springer, Berlin, 2006.
[4]
[5]
(a) Hradil, P.; Hlavac, J.; Soural, M.; Hajduch, M.; Kolar, M.;
Vecerova,
R.
3-Hydroxy-2-phenyl-4(1H)-quinolinones
as
Promising Biologically Active Compounds. Mini Rev. Med. Chem.
2009, 9(6), 696-702. (b) Larsen, R. D. in: Science of Synthesis;
Black, D. S., Ed.; Thieme: Stuttgart, 2005; Vol. 15, p 551.
(a) Xia, Y.; Yang, Z.-Y.; Xia, P.; Bastow, K. F.; Tachibana, Y.;
Kuo, S.-C.; Hamel, E.; Hackl, T.; Lee, K.-H. Antitumor Agents.
181. Synthesis and Biological Evaluation of 6,7,2‘,3‘,4‘-
[8]
[9]
Ibrahim, S. S.; El-Shaaer, H. M.; Hassan, A. Synthesis and
Reactions of Some 2-Methyl-4-oxo-4 H -1-benzopyrans and 2-
Methyl-4-oxo-4H-1-benzo[b]-thiopheno[3,2-b]pyrans. Phosphorus,
Sulfur Silicon Relat. Elem. 2002, 177(1), 151-172.
Chang, Y. H.; Hsu, M. H.; Wang, S. H.; Huang, L. J.; Qian, K.;
Morris-Natschke, S. L.; Hamel, E. ; Kuo, S. C.; Lee, K. H. Design
Substituted-1,2,3,4-tetrahydro-2-phenyl-4-quinolones as
a New
and
Synthesis
of
2-(3-Benzo[b]thienyl)-6,7-
Class of Antimitotic Antitumor Agents. J. Med. Chem. 1998, 41(7),
1155-1162. (b) Prakash, O.; Kumar, D.; Saini, R. K.; Singh, S. P.
Hypervalent Iodine Oxidation of 2-Aryl-1,2,3,4-tetrahydro-4-
quinolones: An Easy Access to 2-Aryl-4-quinolones. Synth.
Commun. 1994, 24(15), 2167-2172. (c) Manthey, J. A.; Guthrie, N.
Antiproliferative Activities of Citrus Flavonoids against Six
Human Cancer Cell Lines. J. Agr. Food Chem. 2002, 50(21), 5837-
5843. (d) Kumar, K. H.; Muralidharan, D.; Perumal, P. T. An
efficient oxidation of 2-aryl-1,2,3,4-tetrahydro-4-quinolones
employing ferric chloride hexahydrate–methanol: synthesis of
naturally occurring 4-alkoxy-2-arylquinolines. Tetrahedron Lett.
2004, 45(42), 7903-7906. (e) Wang, J.-F.; Liao, Y.-X.; Kuo, P.-Y.;
Gau, Y.-H.; Yang, D.-Y. Synthesis and Characterization of
methylenedioxyquinolin-4-one Analogues as Potent Antitumor
Agents that Inhibit Tubulin Assembly Design and Synthesis of 2-
(3-Benzo[b]thienyl)-6,7-methylenedioxyquinolin-4-one Analogues
as Potent Antitumor Agents that Inhibit Tubulin Assembly. J. Med.
Chem. 2009, 52(15), 4883-4891.
[10]
(a) Menasra, H.; Kedjadja, A.; Rhouati, S.; Carboni, B.; Belfaitah,
A. Efficient Synthesis of 3-Pyrrolylquinolines via an 1,3-Dipolar
Cycloaddition/Oxidation Sequence. Synth. Commun. 2005, 35(21),
2779-2788. (b) Bouraiou, A.; Belfaitah, A.; Bouacida, S.; Benard-
Rocherulle, P.; Carboni, B. (E)-3-(2-Ethoxyquinolin-3-yl)-1-(2-
hydroxy-6-methylphenyl)prop-2-en-1-one. Acta Cryst. 2007, E63,
o2133-o2135. (c) Bouraiou, A.; Belfaitah, A.; Bouacida, S.;
Benard-Rocherulle, P.; Carboni, B. Ethyl trans-3-(2-chloro-6,7-
dimethylquinolin-3-yl)-1-cyclohexylaziridine-2-carboxylate. Acta
Cryst. 2007, E63, o1626-1628. (d) Bouraiou, A.; Debbache, A.;
Rhouati, S.; Carboni, B.; Belfaitah, A. 1,3-Dipolar cycloaddition of
stabilized azomethine ylides to alkenyl quinolines: An efficient
route to polyfunctionalized 3-pyrrolidinylquinoline derivatives. J.
Heterocyclic Chem. 2008, 45(2), 329-333.
Alabaster, C. T.; Bell, A. S.; Campbell, S. F.; Ellis, P.; Henderson,
C. G.; Roberts, D. A.; Ruddock, K. S.; Samuels, G. M. R.;
Stefaniak, M. H. 2(1H)-Quinolinones with cardiac stimulant
activity. 1. Synthesis and biological activities of (six-membered
heteroaryl)-substituted derivatives. J. Med. Chem. 1988, 31(10),
2048-2056.
[1]Benzopyrano[4,3-d][1,3]benzooxazocin-13-one
and
its
Derivatives. Synlett 2006, (17), 2791-2795. (f) Gong, J.; Huang, K.;
Wang, F.; Yang, L.; Feng, Y.; Li, H.; Li, X.; Zeng, S.; Wu, X.;
Stoeckigt, J.; Zhao, Y.; Qu, J. Preparation of two sets of 5,6,7-
trioxygenated dihydroflavonol derivatives as free radical
scavengers and neuronal cell protectors to oxidative damage.
Bioorg. Med. Chem. 2009, 17(9), 3414-3425. (g) Jasril; Mooi, L.
Y.; Lajis, N. H.; Ali, A. M.; Sukari, M. A.; Rahman, A. A.;
Othman, A. G.; Kikuzaki, H.; Nakatani, N. Antioxidant and
Antitumor Promoting Activities of the Flavonoids from Hedychium
thyrsiforme. Pharm. Biol. 2003, 41(6), 506-511.
(a) Chen, C.-L.; Lin, C.-W.; Hsieh, C.-C.; Lai, C.-H.; Lee, G.-H.;
Wang, C.-C.; Chou, P.-T. Dual Excited-State Intramolecular Proton
Transfer Reaction in 3-Hydroxy-2-(pyridin-2-yl)-4H-chromen-4-
one. J. Phys. Chem. A 2009, 113(1), 205-214. (b) Laroche, M.-F.;
Marchand, A.; Duflos, A.; Massiot, G. Diels–Alder adducts from
flavonoid. Tetrahedron Lett. 2007, 48(51), 9056-9058. (c) Dyrager,
C.; Friberg, A.; Dahlen, K.; Friden-Saxin, M.; Boerjesson, K.;
Wilhelmsson, L. M.; Smedh, M.; Groetli, M.; Luthman, K. 2,6,8-
[11]
[12]
[6]
Selected data for 2-(2,7-dimethoxyquinolin-3-yl)chroman-4-one 4b
(yellow solid, mp. 160-163°C): 1H NMR (300 MHz, CDCl3) ꢀ 8.25
(s, 1H), 7.98 (dd, J = 8.2, 1.5 Hz, 1H), 7.68 (d, J = 8.7 Hz, 1H),
7.54 (td, J = 8.7 Hz, 1.8 Hz, 1H), 7.26 (m, 1H), 7.15-7.06 (m, 1H),
5.80 (dd, J = 13.0, 3.2 Hz, 1H), 4.11 (s, 3H), 3.96 (s, 3H), 3.15 (dd,
J = 13.2, 3.0 Hz, 1H), 2.91 (dd, J = 17.0, 13.2 Hz, 1H). 13C NMR
(75.4 MHz, CDCl3) ꢁ 192.1, 162.1, 161.6, 159.5, 140.7, 136.5,