Asymmetric Michael/Cross-Benzoin Cascade Reaction
[6] For cooperative catalysis with NHCs, see: a) B. Cardinal-Da-
vid, D. E. A. Raup, K. A. Scheidt, J. Am. Chem. Soc. 2010,
132, 5345–5347; b) D. E. A. Raup, B. Cardinal-David, D.
Holte, K. A. Scheidt, Nat. Chem. 2010, 2, 766–771; c) N. T.
Patil, Angew. Chem. 2011, 123, 1797–1799; Angew. Chem. Int.
Ed. 2011, 50, 1759–1761; d) D. T. Cohen, B. Cardinal-David,
K. A. Scheidt, Angew. Chem. 2011, 123, 1716–1720; Angew.
Chem. Int. Ed. 2011, 50, 1678–1682.
[7] For dual catalysis with NHCs, see: a) S. P. Lathrop, T. Rovis,
J. Am. Chem. Soc. 2009, 131, 13628–13630; b) B. Hong, N. S.
Dange, C. Hsu, J. Liao, Org. Lett. 2010, 12, 4812–4815; c) Z.
Chen, X. Yu, J. Wu, Chem. Commun. 2010, 46, 6356–6358; d)
C. M. Filloux, S. P. Lathrop, T. Rovis, Proc. Natl. Acad. Sci.
USA 2010, 107, 20666–20671; e) B. Hong, N. S. Dange, C. Hsu,
J. Liao, G. Lee, Org. Lett. 2011, 13, 1338–1341.
been stirred for 24 h, the carbene precursor 5 (10 mol-%) and
KOAc (30 mol-%) were consecutively added in one portion. While
the reaction mixture was stirred for additional 24 h it slowly
reached room temperature. The crude product was directly purified
by column chromatography to afford 3 as a colourless solid.
Supporting Information (see footnote on the first page of this arti-
cle): Complete experimental details and spectroscopic data for all
new compounds.
Acknowledgments
This work was supported by the Fonds der Chemischen Industrie
and the Deutsche Forschungsgemeinschaft (SeleCa – international
research training group).
[8] For a review on sulfones in organocatalysis, see: M. Nielsen,
C. Jacobsen, N. Holub, M. Paixão, K. A. Jørgensen, Angew.
Chem. 2010, 122, 2726–2738; Angew. Chem. Int. Ed. 2010, 49,
2668–2679.
[1] For recent reviews on NHC catalysis, see: a) D. Enders, T. Ba-
lensiefer, Acc. Chem. Res. 2004, 37, 534–541; b) D. Enders, O.
Niemeier, A. Henseler, Chem. Rev. 2007, 107, 5606–5655; c) N.
Marion, S. Díes-González, S. P. Nolan, Angew. Chem. 2007,
119, 3046–3058; Angew. Chem. Int. Ed. 2007, 46, 2988–3000;
d) P. Hoyos, J. Sinisterra, F. Molinari, A. R. Alcántara, P. D.
María, Acc. Chem. Res. 2010, 43, 288–299.
[2] For selected reviews on organocatalysis, see: a) A. Berkessel, H.
Gröger, Asymmetric Organocatalysis, Wiley-VCH, Weinheim,
2005; b) P. I. Dalko, Enantioselective Organocatalysis: Reac-
tions and Experimental Procedures, Wiley-VCH, Weinheim,
2007; c) H. Pellissier, Tetrahedron 2007, 63, 9267–9331; d) Spe-
cial issue on organocatalysis (Ed.: B. List): Chem. Rev. 2007,
107, 5413–5883; e) R. Marcia De Figueiredo, M. Christmann,
Eur. J. Org. Chem. 2007, 2575–2600; f) A. Dondoni, A. Massi,
Angew. Chem. 2008, 120, 4716–4739; Angew. Chem. Int. Ed.
2008, 47, 4638–4660; g) D. W. C. MacMillan, Nature 2008, 455,
304–308; h) S. Bertelsen, K. A. Jørgensen, Chem. Soc. Rev.
2009, 38, 2178–2189; i) M. Nielsen, D. Worgull, T. Zweifel, B.
Gschwend, S. Bertelsen, K. A. Jørgensen, Chem. Commun.
2011, 47, 632–649.
[3] For selected reviews on organocatalytic domino reactions, see:
a) D. Tejedor, D. González-Cruz, A. Santos-Expósito, J. J.
Marrero-Tellado, P. de Armas, F. García-Tellado, Chem. Eur.
J. 2005, 11, 3502–3510; b) D. Enders, C. Grondal, M. R. M.
Hüttl, Angew. Chem. 2007, 119, 1590–1601; Angew. Chem. Int.
Ed. 2007, 46, 1570–1581; c) X. Yu, W. Wang, Org. Biomol.
Chem. 2008, 6, 2037–2046; d) C. Grondal, M. Jeanty, D. En-
ders, Nat. Chem. 2010, 2, 167–178.
[4] For cascade reactions in total synthesis, see: a) A. M. Walji,
D. W. C. MacMillan, Synlett 2007, 10, 1477–1489; b) C. Vaxe-
laire, P. Winter, M. Christmann, Angew. Chem. 2011, 123, 2–5;
Angew. Chem. Int. Ed. 2011, 50, 2–5.
[9] a) M. Nielsen, C. B. Jacobsen, M. W. Paixao, N. Holub, K. A.
Jørgensen, J. Am. Chem. Soc. 2009, 131, 10581–10586; b) J.
Alemán, V. Marcos, L. Marzo, J. L. G. Ruano, Eur. J. Org.
Chem. 2010, 4482–4491; c) T. Zweifel, M. Nielsen, J. Over-
gaard, C. B. Jacobsen, K. A. Jørgensen, Eur. J. Org. Chem.
2011, 47–52.
[10] For cross-benzoin reactions using N-heterocyclic carbenes, see:
a) H. Stetter, G. Dämbkes, Synthesis 1977, 403–404; b) T. Mat-
sumoto, M. Ohishi, S. Inoue, J. Org. Chem. 1985, 50, 603–
606; c) J. Castells, F. López Calahorra, M. Bassedas, P. Urrios,
Synthesis 1988, 314–315; d) J. A. Murry, D. E. Frantz, A.
Soheili, R. Tillyer, E. J. J. Grabowski, P. J. Reider, J. Am. Chem.
Soc. 2001, 123, 9696–9697; e) Y. Hachisu, J. W. Bode, K. Su-
zuki, J. Am. Chem. Soc. 2003, 125, 8432–8433; f) A. E. Matt-
son, K. A. Scheidt, Org. Lett. 2004, 6, 4363–4366; g) Y. Hach-
isu, J. W. Bode, K. Suzuki, Adv. Synth. Catal. 2004, 346, 1097–
1100; h) D. Enders, O. Niemeier, Synlett 2004, 2111–2114; i)
S. M. Mennen, J. D. Gipson, Y. R. Kim, S. J. Miller, J. Am.
Chem. Soc. 2005, 127, 1654–1655; j) D. Enders, O. Niemeier,
T. Balensiefer, Angew. Chem. 2006, 118, 1491–1495; Angew.
Chem. Int. Ed. 2006, 45, 1463–1467; k) H. Takikawa, Y. Hach-
isu, J. W. Bode, K. Suzuki, Angew. Chem. 2006, 118, 3572–
3574; Angew. Chem. Int. Ed. 2006, 45, 3492–3494; l) G. Li, L.
Dai, S. You, Chem. Commun. 2007, 852–854; m) D. Enders, A.
Henseler, Adv. Synth. Catal. 2009, 351, 1749–1752; n) D. En-
ders, A. Henseler, S. Lowins, Synthesis 2009, 4125–4128; o)
A. K. Mathies, A. E. Mattson, K. A. Scheidt, Synlett 2009,
377–383; p) D. Enders, A. Grossmann, J. Fronert, G. Raabe,
Chem. Commun. 2010, 46, 6282–6284; q) C. A. Rose, S. Gund-
ala, S. J. Connon, K. Zeitler, Synthesis 2011, 2, 190–198; r)
S. E. O’Toole, C. A. Rose, S. Gundala, K. Zeitler, S. J. Connon,
J. Org. Chem. 2011, 76, 347–357; s) N. Kuhl, F. Glorius, Chem.
Commun. 2011, 47, 573–575.
[5] For organocatalytic domino reactions with NHC catalysts, see:
a) E. Sánchez-Larios, M. Gravel, J. Org. Chem. 2009, 74, 7536–
7539; b) A. T. Biju, N. E. Wurz, F. Glorius, J. Am. Chem. Soc.
2010, 132, 5970–5971; c) F. Sun, X. Huang, S. Ye, J. Org. Chem.
2010, 75, 273–276; d) E. Sánchez-Larios, J. M. Holmes, C. L.
Daschner, M. Gravel, Org. Lett. 2010, 12, 5772–5775; e) M.
Yoshida, N. Terai, K. Shishido, Tetrahedron 2010, 66, 8922–
8927; f) X. Fang, K. Jiang, C. Xing, L. Hao, Y. R. Chi, Angew.
Chem. 2011, 123, 1950–1953; Angew. Chem. Int. Ed. 2011, 50,
1910–1913; g) K. Wu, G. Li, Y. Li, L. Dai, S. You, Chem.
Commun. 2011, 47, 493–495; h) L. Li, D. Du, J. Ren, Z. Wang,
Eur. J. Org. Chem. 2011, 614–618; i) J. Ma, Y. Huang, R. Chen,
Org. Biomol. Chem. 2011, 9, 1791–1798; j) Y. Cheng, J. Peng,
Y. Li, X. Shi, M. Tang, T. Tan, J. Org. Chem. 2011, 76, 1844–
1851; k) F. Sun, S. Ye, Synlett 2011, 7, 1005–1009; l) T. Bodda-
ert, Y. Coquerel, J. Rodriguez, Chem. Eur. J. 2011, 17, 2266–
2271.
[11] Compounds 3g and 3h showed low solubility in most organic
solvents. Therefore, it was difficult to obtain reproducable ee
values by HPLC analysis. The values in Table 2 are the lowests
that were measured. Since these two compounds also form con-
glomerates, we assume that the variation in the ee values is due
to partial crystallisation on the HPLC column. The average of
the measured values for 3g was 92 %.
[12] For the NOE measurements of 3n, see Supporting Information.
[13] CCDC-819238 contains the supplementary crystallographic-
data for the compound 3d reported in this paper. These data
can be obtained free of charge from The Cambridge Crystallo-
[14] For the corresponding diagrams of 3a, see Supporting Infor-
mation.
Received: May 17, 2011
Published Online: June 15, 2011
Minor changes have been made since publication in Early View.
Eur. J. Org. Chem. 2011, 4298–4301
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
4301