942
J Chem Crystallogr (2011) 41:936–943
`
6. Penicaud A, Boubekeur K, Batail P, Canadell E, Auban-Senzier
P, Jerome D (1993) J Am Chem Soc 115:4101
7. Coulon C, Livage C, Gonzalez L, Boubekeur K, Batail P (1993) J
Phys 1(3):1
terminal cyanide ligand leads to a lengthening of the triple
bond and a lowering in its corresponding stretching fre-
quency upon reduction. For example, when TCNQ is
reduced in the presence of reducing agents such as
(Cp*)2M (M = Fe or Co), the cyanide stretching frequency
reduces from 2222 cm-1 in its neutral form to a multiplet
and singlet at 2153 and 2179 cm-1 respectively in the
radical anionic (TCNQ•-) state. Concurrently, the length
of the cyanide triple bond increases upon reduction of
TCNQꢁ to its radical anion, lengthening from 1.140(1) to
´ ´
8. Coronado E, Gomez-Garcıa CJ (1995) Comments Inorg Chem
17:255
´
´
´
9. Gomez-Garcıa CJ, Gimenez-Saiz C, Triki S, Coronado E,
Magueres PL, Ouahab L, Ducasse L, Sourisseau C, Delhaes P
(1995) Inorg Chem 34:4139
´
10. Galan-Mascaros JR, Gimenez-Saiz C, Triki S, Gomez-Garcıa CJ,
Coronado E, Ouahab L (1995) Angew Chem Int Ed Engl 34:1460
´
´
´
´
´
´
´
´
11. Coronado E, Galan-Mascaros JR, Gimenez-Saiz C, Gomez-Gar-
´
cıa CJ, Triki S (1998) J Am Chem Soc 120:4671
˚
1.153(7) A [89–92]. Since the cyanide stretching frequen-
12. Kobayashi H, Tomita H, Naito T, Kobayashi A, Sakai F,
Watanabe T, Cassoux P (1996) J Am Chem Soc 118:368
13. Kurmoo M, Graham AW, Day P, Coles SJ, Hursthouse MB,
Caulfield JL, Singleton J, Pratt FL, Hayes W, Ducasse L, Guin-
neau P (1995) J Am Chem Soc 117:12209
cies for TMTTF–TCNB are nearly equivalent to those for
free TCNB, the conclusions reached through structure
solution are confirmed spectroscopically.
´
(2000) Nature 408:447
´ ´
14. Coronado E, Galan-Mascaros JR, Gomez-Garcia CJ, Laukhin V
15. Triki S, Ouahab L, Grandjean D, Fabre JM (1991) Acta Cryst
C47:1371
Conclusion
´
16. Penicaud A, Batail P, Coulon C, Canadell E, Perrin C (1990)
Chem Mater 2:123
In this manuscript, we present the structure of the 1:1
encounter complex containing the chalcofulvalene donor
TMTTF and the organocyanide acceptor TCNB. This
complex contains integrated stacks of donor and acceptor
molecules that stack parallel to the a axis at uniform dis-
tances. Hydrogen bonding interactions were found to occur
between the donor and acceptor molecules and among
dyads of TCNB acceptors related by translation along the b
´
´
´
´
17. Reinheimer EW, Galan-Mascaros JR, Gomez-Garcıa CJ, Zhao H,
´
Fourmigue M, Dunbar KR (2008) J Mol Struct 890:81
18. Adachi T, Ojima E, Kato K, Kobayashi H, Miyazaki T,
Tokumoto M, Kobayashi A (2000) J Am Chem Soc 122:3238
19. Balicas L, Behnia K, Kang W, Auban-Senzier P, Canadell E,
´
Jerome D, Ribault M, Fabre JM (1994) Adv Mater 6:762
´
20. Jerome D, Mazaud M, Ribault M, Bechgaard K (1980) J Phys
Lett L95:1416
´
21. Jerome D (1991) Science 252:1509
22. Thorup N, Rindorf G, Soling H, Bechgaard K (1981) Acta Cryst
B37:1236
23. Bechgaard K, Jacobsen C, Mortensen K, Pedersen H, Thorup N
(1979) Solid State Commun 33:1119
24. Brun G, Peytavin S, Liautard B, Maurin ET, Fabre JM, Giral L
(1977) C R Acad Sci (Paris) 284C:211
25. Phillips TE, Kistenmacher TJ, Bloch AN, Ferraris JP, Cowan DO
(1977) Acta Cryst B33:422
26. Mayerle JJ, Torrance JB (1981) Acta Cryst B37:2030
27. Reinheimer EW, Zhao H, Dunbar KR (2008) Synth Met 158:447
28. Prout CK, Tickle IJ (1973) J Chem Soc Perkin Trans II:520
29. Lefebvre J, Ecolivet C, Bourges P, Mierzejewski A, Luty T
(1991) Phase Transit 32:223
30. Hosaka N, Obata M, Suzuki M, Saiki T, Takeda K, Kuwata-
Gonokami M (2008) Appl Phys Lett 92:113305
31. Arnold BR, Schill AW, Poliakov PV (2001) J Phys Chem A
105:537
ꢀ
axis forming a two dimensional net within the (131) plane.
The presence of black crystals in this system is cryptic,
suggesting the presence of charge transfer; however, no
charge transfer was observed as determined by X-ray
crystallography and infrared spectroscopy. Further analy-
ses, such as single crystal IR and Raman studies, will be
done on crystals of this adduct and the results will be
reported in due course.
Acknowledgments This work was supported by The Welch Foun-
dation (Grant A-1449) and the U.S. Department of Energy (Grant DE-
FG01-05ER05-01). We also acknowledge the National Science
Foundation (Grant 9807975) for the funds to purchase the X-ray
diffractometer. EWR would like to sincerely thank Nancy Erskine for
additional editorial assistance.
32. Ito Y, Nakabayashi H, Ohb S, Hosomi H (2000) Tetrahedron
56:7139
33. Dahl T (2000) Acta Cryst C56:708
34. Deperasinska I, Prochorow J, Dresner J (1998) J Lumin 79:65
35. Ito Y, Endo S, Ohba S (1997) J Am Chem Soc 119:5974
36. Kozankiewicz B (1997) J Lumin 71:37
References
37. Lefebvre J, Rohleder K, Mierzejewski A, Luty T (1995) J Chem
Phys 102:2165
1. Ferraris J, Cowan DO, Walatka VJ, Perlstein JH (1973) J Am
Chem Soc 95:948
38. Ferguson G, Foster R, Iball J, Scrimgeour SN, Williams BC
(1990) Acta Cryst C46:2396
39. Lefebvre J, Miniwicz A, Kowal R (1989) Acta Cryst C45:1372
40. Okajima S, Lim BT, Lim EC (1985) Chem Phys Lett 122:82
41. Miniewicz A, Samoc M, Williams DF (1984) Mol Cryst Liq
Cryst 111:199
2. Coleman LB, Cohen MJ, Sandmand DJ, Yamagishi FG, Garito
AF, Heeger AJ (1973) Solid State Commun 12:1135
3. Phillips TE, Kistenmacher J, Ferraris JP, Cowan DO (1973)
J Chem Soc Chem Commun 471
´
4. Batail P, Boubekeur K, Fourmigue M, Gabriel JCP (1998) Chem
Mater 10:3005
5. Davidson A, Boubekeur K, Penicaud A, Auban P, Lenoir C,
42. Samoc M, Williams DF (1983) J Chem Phys 78:1924
43. Stezowskii JJ (1979) J Phys Chem 83:550
`
Batail P, Herve G (1989) J Chem Soc Chem Commun 18:1373
´
123