Journal of the American Chemical Society
COMMUNICATION
of the binding between the ligand and the receptor. Additionally,
the larger covalent radius of silicon (1.17 Å) compared to that of
carbon (0.77 Å) (SI Table S1), and the higher hydrophobicity
renders the organosilane-based inhibitors with improved proper-
ties. Organosilanes are also often easier to synthesize than their
carbon analogues and, in certain cases, allow access to novel
scaffolds not accessible by standard carbon chemistry.17 In this
report, we explored a carbon-to-silicon switch in A/M2 inhibitors
design. The silaspirane amines were as potent as their carbon
counterparts against WT and were more potent in targeting drug-
resistant V27A, which highlights their promise for further optimiza-
tion. Moreover, this replacement shows promise for NMR spec-
troscopy; three organosilane structural probes were designed to
map the A/M2 drug binding site. Previously, a debate concerning
the location of the pharmacologically relevant A/M2 drug binding
site(s) was settled in favor of the pore-binding model using the
(4) Pinto, L. H.; Holsinger, L. J.; Lamb, R. A. Cell 1992, 69, 517–528.
(5) Rossman, J. S.; Jing, X. H.; Leser, G. P.; Lamb, R. A. Cell 2010,
142, 902–913.
(6) Grambas, S.; Hay, A. J. Virology 1992, 190, 11–18.
(7) Sugrue, R. J.; Bahadur, G.; Zambon, M. C.; Hallsmith, M.;
Douglas, A. R.; Hay, A. J. EMBO J. 1990, 9, 3469–3476.
(8) Sakaguchi, T.; Leser, G. P.; Lamb, R. A. J. Cell. Biol. 1996,
133, 733–747.
(9) Furuse, Y.; Suzuki, A.; Kamigaki, T.; Oshitani, H. Virol. J. 2009, 6.
(10) Furuse, Y.; Suzuki, A.; Oshitani, H. Antimicrob. Agents Che-
mother. 2009, 53, 4457–4463.
(11) Sieburth, S. M.; Langevine, C. N.; Dardaris, D. M. Pestic. Sci.
1990, 28, 309–319.
(12) Sieburth, S. M.; Manly, C. J.; Gammon, D. W. Pestic. Sci. 1990,
28, 289–307.
(13) Bains, W.; Tacke, R. Curr. Opin. Drug Discovery Dev. 2003,
6, 526–543.
(14) Showell, G. A.; Mills, J. S. Drug Discov. Today 2003, 8, 551–556.
(15) Mills, J. S.; Showell, G. A. Exp. Opin. Invest. Drugs 2004,
13, 1149–1157.
(16) Pooni, P. K.; Showell, G. A. Mini-Rev. Med. Chem. 2006, 6,
1169–1177.
(17) Voronkov, M. G. Top. Curr. Chem. 1979, 84, 77–135.
(18) Black, C. A.; Ucci, J. W.; Vorpagel, J. S.; Mauck, M. C.; Fenlon,
E. E. Bioorg. Med. Chem. Lett. 2002, 12, 3521–3523.
(19) Barnes, M. J.; Conroy, R.; Miller, D. J.; Mills, J. S.; Montana,
J. G.; Pooni, P. K.; Showell, G. A.; Walsh, L. M.; Warneck, J. B. H. Bioorg.
Med. Chem. Lett. 2007, 17, 354–357.
13
intermolecular deuteriumÀ C dipolar dephasing experiments in
solid-state NMR37 as well as the solution NOESY difference experi-
ments.36 The organosilane structural probes designed in this study
provide a direct measurement of NOESY cross peaks between the
1
organosilane drug and the A/M2 protein. The 13C-edited H
NOESY clearly showed the drug binds inside the A/M2 channel,
close to the N-terminal lumen, with its positively charged ammo-
nium pointing down toward His37. In conclusion, our studies not
only provide a strategy for improving the potency of A/M2
inhibitors but also demonstrate the utility of organosilanes as
structural probes for drug binding site mapping, which can be
similarly applied to other proteins. This work shows the potential of
using organosilane analogues for direct detection of drugÀprotein
interactions, using the highly sensitive NOESY experiment, thereby
alleviating frequently encountered problems associated with half-
filtered experiments.
(20) Sieburth, S. M.; Nittoli, T.; Mutahi, A. M.; Guo, L. X. Angew.
Chem., Int. Ed. 1998, 37, 812–814.
(21) Wang, J.; Ma, C.; Balannik, V.; Pinto, L. H.; Lamb, R. A.;
DeGrado, W. F. ACS Med. Chem. Lett. 2011, 2, 307–312.
(22) Wang, J.; Cady, S. D.; Balannik, V.; Pinto, L. H.; DeGrado,
W. F.; Hong, M. J. Am. Chem. Soc. 2009, 131, 8066–8076.
(23) Balannik, V.; Wang, J.; Ohigashi, Y.; Jing, X. H.; Magavern, E.;
Lamb, R. A.; DeGrado, W. F.; Pinto, L. H. Biochemistry 2009, 48, 11872–
11882.
(24) Stouffer, A. L.; Acharya, R.; Salom, D.; Levine, A. S.; Di
Costanzo, L.; Soto, C. S.; Tereshko, V.; Nanda, V.; Stayrook, S.;
DeGrado, W. F. Nature 2008, 452, 380–380.
(25) Acharya, R.; Carnevale, V.; Fiorin, G.; Levine, B. G.; Polishchuk,
A. L.; Balannik, V.; Samish, I.; Lamb, R. A.; Pinto, L. H.; DeGrado, W. F.;
Klein, M. L. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 15075–15080.
(26) Zwahlen, C.; Legault, P.; Vincent, S. J. F.; Greenblatt, J.; Konrat,
R.; Kay, L. E. J. Am. Chem. Soc. 1997, 119, 6711–6721.
(27) Soderquist, J. A.; Shiau, F. Y.; Lemesh, R. A. J. Org. Chem. 1984,
49, 2565–2569.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures and
b
spectroscopic data. This material is available free of charge via the
’ AUTHOR INFORMATION
Corresponding Author
(28) Soderquist, J. A.; Negron, A. J. Org. Chem. 1989, 54, 2462–2464.
(29) Damour, D.; Renaudon, A.; Mignani, S. Synlett 1995, 111–112.
(30) Balannik, V.; Lamb, R. A.; Pinto, L. H. J. Biol. Chem. 2008,
283, 4895–4904.
(31) Pielak, R. M.; Chou, J. J. Biochem. Biophys. Res. Commun. 2010,
401, 58–63.
(32) Wang, J.; Ma, C.; Fiorin, G.; Carnevale, V.; Wang, T.; Hu, F.;
Lamb, R. A.; Pinto, L. H.; Hong, M.; Klein, M. L.; DeGrado, W. F. J. Am.
Chem. Soc. 2011, 133, 12834–12841.
(33) Luckey, M., Membrane Structural Biology: With Biochemical and
Biophysical Foundations, 1st ed.; Cambridge University Press: Cambridge,
UK, 2008.
’ ACKNOWLEDGMENT
This work was supported by the NIH (GM56423 and
AI74571). J.W. thanks Dr. Patrick J. Carroll for assistance in
obtaining X-ray crystallographic data and Ivan Korendovych,
Paul Billing, and Belgin Canturk for fruitful comments on the
manuscript. We thank Guy Montelione and Walter Englander for
NMR time on the Varian 600 and Bruker 500 MHz NMR
spectrometers, respectively.
(34) Aliev, A. E.; Harris, K. D. M. J. Am. Chem. Soc. 1993, 115,
6369–6377.
’ REFERENCES
(35) Arnason,I.;Kvaran,A.;Jonsdottir,S.;Gudnason,P.I.;Oberhammer,
H. J. Org. Chem. 2002, 67, 3827–3831.
(36) Cady, S. D.; Wang, J.; Wu, Y.; DeGrado, W. F.; Hong, M. J. Am.
Chem. Soc. 2011, 133, 4274–4284.
(37) Cady, S. D.; Schmidt-Rohr, K.; Wang, J.; Soto, C. S.; DeGrado,
W. F.; Hong, M. Nature 2010, 463, 689–692.
(1) De Clercq, E. Nat. Rev. Drug Discov. 2006, 5, 1015–1025.
(2) Nelson, M. I.; Viboud, C.; Simonsen, L.;Bennett, R. T.; Griesemer,
S. B.; George, K. S.; Taylor, J.; Spiro, D. J.; Sengamalay, N. A.; Ghedin,
E.; Taubenberger, J. K.; Holmes, E. C. PLos Pathogens 2008, 4,
e1000012.
~
(3) Baz, M.; Abed, Y.; Papenburg, J.; Bouhy, X.; Hamelin, M.-A. v.;
Boivin, G. N. Engl. J. Med. 2009, 361, 2296–2297.
13847
dx.doi.org/10.1021/ja2050666 |J. Am. Chem. Soc. 2011, 133, 13844–13847