5088
R. Yu. Iliashenko et al. / Tetrahedron Letters 52 (2011) 5086–5089
Even in the case of the strong nucleophile OHꢀ, we obtained an in-
crease in the yield and less by-products.
1.0
0.5
1
References and notes
1. (a) Lakowicz, J. R. Principles of Fluorescence Spectroscopy, Third edition; Springer
Science: Singapore, 2006; (b) Valeur, B. Molecular Fluorescence; Wiley-VCH
GmbH: Germany, 2002.
2. (a) Eichhorn, M. Appl. Phys. B 2009, 96, 369–377; (b) Bordeau, G.; Lartia, R.;
Teulade-Fichou, M.-P. Tetrahedron Lett. 2010, 51, 4429–4432.
3. Birks, J. B. The Theory and Practice of Scintillation Counting; Pergamon Press:
Oxford, 1967; (b) Zorn, C.; Bowen, M.; Majewski, S.; Walker, J.; Wojcik, R.;
Hulburt, C.; Moser, W. Nucl. Instr. Meth. Phys. Res. 1988, A273, 108–116.
4. (a) Lewis, N. S.; Nocera, D. G. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 15729–
15735; (b) McNamara, W. R.; Snoeberger, R. C.; Li, G.; Schleicher, J. M.; Cady, C.
W.; Poyatos, M.; Schmuttenmaer, C. A.; Crabtree, R. H.; Brudvig, G. W.; Batista,
V. S. J. Am. Chem. Soc. 2008, 130, 14329–14338.
0.0
1.0
278 294 313 333 357 385 417 455 500 556 625
Wavelength, nm
5. (a) Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913–915; (b) Tamoto,
N.; Adachi, C.; Nagai, K. Chem. Mater. 1997, 9, 1077–1085.
2
6. de Silva, A. P.; Fox, D. B.; Huxley, A. J. M.; Moody, T. S. Coord. Chem. Rev. 2000,
205, 41–57.
7. Vollmer, F.; Rettig, W.; Birckner, E. J. Fluoresc. 1994, 4, 65–69.
8. Volchkov, V. V.; Uzhinov, B. M. High Energy Chem. 2008, 42, 153–169.
9. (a) Ormson, S. M.; Brown, R. G. Progr. React. Kinet. 1994, 19, 45–91; (b)
LeGourrierec, D.; Ormson, S. M.; Brown, R. G. Progr. React. Kinet. 1994, 19, 221–
295.
0.5
10. Vollmer, F.; Rettig, W. J. Photochem. Photobiol. A: Chem. 1996, 95, 143–155.
11. (a) Siebert, R.; Winter, A.; Schubert, U. S.; Dietzek, B.; Popp, J. J. Phys. Chem. C
2010, 114, 6841–6848; (b) Yang, C.-C.; Hsu, C.-J.; Chou, P.-T.; Cheng, H. C.; Su, Y.
O.; Leung, M.-K. J. Phys. Chem. B 2010, 114, 756–768.
12. Doroshenko, A. O. Theor. Exper. Chem. 2002, 38, 133–152.
13. (a) Grabowski, Z. R.; Rotkiewicz, K.; Semiarczuk, A.; Cowley, D. J.; Baumann, W.
Nouv. J. Chim. 1979, 3, 443–453; (b) Rettig, W. Angew. Chem., Int. Ed. 1986, 25,
971–988.
14. Grabowski, Z. R.; Rotkiewicz, K.; Rettig, W. Chem. Rev. 2003, 103, 3899–4031.
15. (a) Doroshenko, A. O.; Patsenker, L. D.; Baumer, V. N.; Chepeleva, L. V.;
Van’kevich, A. V.; Kirichenko, A. V.; Yarmolenko, S. N.; Shershukov, V. M.;
Mitina, V. G.; Ponomaryov, O. A. Mol. Engineering 1994, 3, 353–363; (b)
Doroshenko, A. O.; Kyrychenko, A. V.; Baumer, V. N.; Verezubova, A. A.;
Ptyagina, L. M. J. Mol. Struct. 2000, 524, 289–296; (c) Doroshenko, A. O.;
Baumer, V. N.; Verezubova, A. A.; Ptyagina, L. M. J. Mol. Struct. 2002, 609, 29–37.
16. Doroshenko, A. O.; Kirichenko, A. V.; Mitina, V. G.; Ponomaryov, O. A. J.
Photochem. Photobiol. A: Chem. 1996, 94, 15–26.
0.0
278 294 313 333 357 385 417 455 500 556 625 714
Wavelength, nm
1.0
3
0.5
0.0
17. Ambats, I.; Marsh, R. E. Acta Cryst. 1965, 19, 942–948.
18. Doroshenko, A. O.; Baumer, V. N.; Kirichenko, A. V.; Shershukov, V. M.;
Tolmachev, A. V. Chem. Heterocycl. Comp. 1997, 33, 1341–1349.
19. (a) Doroshenko, A. O. Chem. Phys. Rep. 1999, 18, 873–879; (b) Doroshenko, A. O.
Russ. J. Phys. Chem. 2000, 74, 773–777; (c) Doroshenko, A. O.; Kyrychenko, A. V.;
Waluk, J. J. Fluoresc. 2000, 10, 41–48.
20. Kirichenko, A. V.; Doroshenko, A. O.; Shershukov, V. M. Chem. Phys. Rep. 1998,
17, 1643–1651.
21. Vlasov, V. M. Russ. Chem. Rev. 2003, 72, 681–704.
22. (a) Ossowski, T.; Zarzeczan´ ska, D.; Zalewski, L.; Niedziałkowski, P.; Majewski,
R.; Szyman´ ska, A. Tetrahedron Lett. 2005, 46, 1735–1738; (b) Demchenko, S. A.;
Pivovarenko, V. G. Ukr. Bioorg. Acta 2006, 1, 11–16; (c) Yushchenko, D. A.;
Bilokin, M. D.; Pyvovarenko, O. V.; Duportail, G.; Mély, Y.; Pivovarenko, V. G.
Tetrahedron Lett. 2006, 47, 905–908.
294 313 333 357 385 417 455 500 556 625 714
Wavelength, nm
Figure 1. Electronic absorption spectra of compounds 1–3 in hexane (violet, light
violet for 3 in EtOH). Fluorescence spectra excited at 330 nm in hexane (blue) and
EtOH (red), Stokes shifts are shown by arrows of the corresponding color. Insets:
fluorescence in EtOH.
with the fluorescence quantum yield in ethanol. Probably, this is
the effect of specific interactions with protic solvent molecules,
however, excited state OH group photodissociation was not ob-
served as was the case when the alcohol solution was made basic.
Introduction of the most pronounced electron-donor group
within the examined series (compound 3) results in a definite sys-
tematic decrease in both the fluorescence quantum yield and mean
lifetime, however they still remain reasonably high. The ethanol
solution of 3 demonstrated further acceleration of radiationless de-
cay, but it was not as high as could be expected in the cases when
formation of twisted intramolecular charge transfer (TICT) states
took place.13,14 We note, that a significant Stokes shift increase
was observed for 3 on going from acetonitrile to ethanol. This is
a reflection of the role of hydrogen bonding in the photophysics
of this compound, connected with the increase in the electron-
withdrawing parameters of its H-bonded oxazole rings and inten-
sification of the intramolecular excited state donor–acceptor
interactions.
23. Ilyashenko, R.; Wera, M.; Błazejowski, J.; Doroshenko, A. Acta Cryst. 2010, E66,
o2379–o2380.
24. A monomode microwave system Emrys™ Creator EXP from Biotage (Uppsala,
Sweden) equipped with an IR temperature sensor and pressure control system
was used for MW-assisted synthesis. The absorption mode was set to ‘normal’
with the initial power at 300 W. Process vials with 5 ml of the reaction mixture
volume were used.
25. 1-[5-(4-Hydroxyphenyl)oxazol-2-yl]-2-(5-phenyloxazol-2-yl)benzene
(2).
Thermal activation: A solution of 0.3 g (7.8 ꢁ 10ꢀ4 mol) of compound 1 with
0.1 g of KOH in DMSO (15 ml) was heated over 8 h using a glycerol bath at
120 °C with periodic monitoring by fluorescence at an excitation wavelength of
330 nm (by cooling and removing microliter portions of the reaction mixture
for analysis). The reaction mixture was poured into 100 ml of cold H2O and
acidified with AcOH. The resulting precipitate was filtered, washed with H2O
and dried. Purification was done by column chromatography on silica/benzene.
Yield 0.174 g, (4.6 ꢁ 10ꢀ4 mol, 58%).
26. 1-[5-(4-Hydroxyphenyl)oxazol-2-yl]-2-(5-phenyloxazol-2-yl)benzene
(2).
Microwave activation: A solution of 0.3 g (7.8 ꢁ 10ꢀ4 mol) of compound 1
with 0.1 g of KOH in DMSO (5 ml) was heated to 120 °C for 2 h in a closed glass
vial under microwave irradiation (visual monitoring by fluorescence color).
Separation and purification was as described above. Yield 0.246 g
(6.5 ꢁ 10ꢀ4 mol, 82%). Compound 2: C24H16N2O3, white fine-crystalline solid,
mp 102–103 °C, 1H NMR (Varian Mercury VX-200, 200 MHz, DMSO-d6): 6.7 (d,
J = 7.6 Hz, 2H), 7.28–7.31 (m, 5H), 7.49–7.52 (m, 3H), 7.67 (d, J = 7.6 Hz, 2H),
7.85 (s, 1H), 8.08 (m, 2H), 9.2 (br s 1H). MS (Varian 1200 L, EI, 70 eV): 381, 380
(M+), 351, 324, 303. No molecular ions for initial compound 1 and its most
probable first fragment ions were detected in the MS of sample 2 (382, 363/
362, 356).
In conclusion, a new approach for the synthesis of unsymmetri-
cally substituted ortho-analogs of POPOP including aromatic nucle-
ophilic substitution of a fluorine atom has been elaborated.
Microwave irradiation makes the above reaction significantly more
efficient, clean and rapid, especially in the case of the relatively
weak nucleophilic reagent—the secondary cyclic amine piperidine.