´
4532
S. Stankovic et al. / Tetrahedron Letters 52 (2011) 4529–4532
2010, 75, 885–896; (e) Kim, Y.; Ha, H.-J.; Yun, H.; Lee, B. K.; Lee, W. K.
Tetrahedron 2006, 62, 8844–8849.
N
5. (a) Vervisch, K.; D’hooghe, M.; Törnroos, K. W.; De Kimpe, N. Org. Biomol. Chem.
2009, 7, 3271–3279; (b) D’hooghe, M.; Vervisch, K.; Törnroos, K. W.; De Kimpe,
N. J. Org. Chem. 2007, 72, 7329–7332.
6. D’hooghe, M.; Vanlangendonck, T.; Törnroos, K. W.; De Kimpe, N. J. Org. Chem.
2006, 71, 4678–4681.
a
b
Cl
19
N
N
Cl
a
b
7. (a) De Smaele, D.; Bogaert, P.; De Kimpe, N. Tetrahedron Lett. 1998, 39, 9797–
9800; (b) D’hooghe, M.; Van Nieuwenhove, A.; Van Brabandt, W.; Rottiers, M.;
De Kimpe, N. Tetrahedron 2008, 64, 1064–1070.
8. D’hooghe, M.; Waterinckx, A.; De Kimpe, N. J. Org. Chem. 2005, 70, 227–232.
9. Vervisch, K.; D’hooghe, M.; Törnroos, K. W.; De Kimpe, N. J. Org. Chem. 2010, 75,
7734–7744.
Cl
HOMe
N
18d
22
OMe
20
10. (a) Sheikha, G. A.; La Colla, P.; Loi, A. G. Nucleosides Nucleotides Nucl. 2002, 21,
619–635; (b) D’hooghe, M.; Kenis, S.; Vervisch, K.; Lategan, C.; Smith, P. J.;
Chibale, K.; De Kimpe, N. Eur. J. Med. Chem. 2011, 46, 579–587; (c) D’hooghe,
M.; De Kimpe, N. Chem. Commun. 2007, 1275–1277.
11. (a) D’hooghe, M.; Mangelinckx, S.; Persyn, E.; Van Brabandt, W.; De Kimpe, N. J.
Org. Chem. 2006, 71, 4232–4236; (b) D’hooghe, M.; Rottiers, M.; Jolie, R.; De
Kimpe, N. Synlett 2005, 931–934.
Scheme 6. Formation of azetidines 19 and 20 from 18d.
R
R
R
N
N
NaBH4
NaBH4
N
X
H
MeOH, Δ
MeOH, Δ
Cl
´
12. Stankovic, S.; Catak, S.; D’hooghe, M.; Goossens, H.; Abbaspour Tehrani, K.;
X
OMe
18
Bogaert, P.; Waroquier, M.; Van Speybroeck, V.; De Kimpe, N. J. Org. Chem.
2011, 76, 2157–2167.
X = Cl
X = Br
23
6
13. (a) Cromwell, N. H.; Phillips, B. Chem. Rev. 1979, 79, 331–358; (b) Moore, J. A.;
Ayers, R. S. In Chemistry of Heterocyclic Compounds-Small Ring Heterocycles;
Hassner, A., Ed.; Wiley: New York, NY, 1983; pp 1–217. Part 2; (c) Davies, D. E.;
Storr, R. C. In Comprehensive Heterocyclic Chemistry; Lwowski, W., Ed.;
Pergamon: Oxford, 1984; Vol. 7, pp 237–284. Part 5; (d) Singh, G. S.;
D’hooghe, M.; De Kimpe, N. Azetidines, Azetines, and Azetes: Monocyclic In
Comprehensive Heterocyclic Chemistry III, A Review of the Literature 1995–2007;
Katritzky, A., Ramsden, C., Scriven, E., Taylor, R., Eds.; Elsevier: Oxford, 2008;
Vol. 2, pp 1–110; (e) Bagal, S. K.; Davies, S. G.; Lee, J. A.; Roberts, P. M.; Russell,
A. J.; Scott, P. M.; Thomson, J. E. Org. Lett. 2010, 12, 136–139; (f) Feula, A.; Male,
L.; Fossey, J. S. Org. Lett. 2010, 12, 5044–5047; (g) Brown, M. J.; Clarkson, G. J.;
Inglis, G. G.; Shipman, M. Org. Lett. 2011, 13, 1686–1689; (h) Couty, F.; Durrat,
F.; Prim, D. Tetrahedron Lett. 2003, 44, 5209–5212; (i) Couty, F.; Evano, G.
Synlett 2009, 3053–3064; (j) Couty, F. Sci. Synth. 2009, 773–817; (k) Couty, F.;
Durrat, F.; Evano, G. Targets Heterocycl. Syst. 2005, 9, 186–210; (l) Couty, F.;
Evano, G. Org. Prep. Proced. Int. 2006, 38, 427–465; (m) Mangelinckx, S.;
R
N
Br
5
Scheme 7. Different reactivity of imines 23 with respect to NaBH4 depending on
the substituent X (X = Cl or Br).
opening by means of LiAlH4. On the other hand, the behaviour of
2-chloromethyl-2-methylaziridines 18 was shown to be intrinsi-
cally different than that of their brominated analogues 5. While
2-bromomethyl-2-methylaziridines 5 have previously been shown
to be the kinetic products in the formation of 3-methoxy-3-methy-
ˇ
ˇ
Zukauskaite, A.; Buinauskaite, V.; Šackus, A.; De Kimpe, N. Tetrahedron Lett.
˙
˙
2008, 49, 6896–6900.
14. Gaertner, V. R. J. Org. Chem. 1970, 35, 3952–3959.
lazetidines 6 upon treatment of
(X = Br) with NaBH4 in methanol under reflux,
a
,b-dibrominated imines 23
15. D’hooghe, M.; De Meulenaer, B.; De Kimpe, N. Synlett 2008, 2437–2442.
16. (a) Lumbroso, A.; Chevallier, F.; Beaudet, I.; Quintard, J.-P.; Besson, T.; Le
Grognec, E. Tetrahedron 2009, 65, 9180–9187; (b) Dekeukeleire, S.; D’hooghe,
M.; Müller, C.; Vogt, D.; De Kimpe, N. New J. Chem. 2010, 34, 1079–1083.
a
,b-dichloroaldi-
mines 23 (X = Cl) were converted into 2-chloromethyl-2-methylaz-
iridines 18 applying the same reaction conditions (with the
exception of the t-butyl derivative), pointing to the relative stabil-
ity of these aziridines 18 towards ring expansion as a result of the
less pronounced leaving group capacity of chloride as compared to
bromide (Scheme 7).
17. As
a representative example, the synthesis of 1-(4-chlorobenzyl)-2-
(chloromethyl)aziridine 12c is described here. N-(4-Chlorobenzylidene)-2,3-
dichloropropylamine 11c (2.51 g, 10 mmol) was dissolved in methanol (30 ml),
after which NaBH4 (1.13 g, 3 mol equiv) was added in small portions at 0 °C,
and the mixture was stirred for 22 h under reflux. The reaction mixture was
poured into water (20 ml) and extracted with CH2Cl2 (3 Â 20 ml). The
combined organic extracts were washed with H2O (2 Â 15 ml) and brine
(20 ml). Drying (MgSO4), filtration of the drying agent and evaporation of the
solvent afforded 1-(4-chlorobenzyl)-2-(chloromethyl)aziridine 12c (2.10 g,
97%), which was purified by distillation (Bp = 86–92 °C/0.09 mmHg) in order
to obtain an analytically pure sample. 1-(4-Chlorobenzyl)-2-(chloromethyl)
aziridine 12c: Bp = 86–92 °C/0.09 mmHg; Yield 97%; 1H NMR (60 MHz, CCl4) d
1.30–2.00 (3H, m), 2.90–3.80 (4H, m), 7.28 (4H, s). 13C NMR (125 MHz, CDCl3) d
References and notes
1. (a) Lindstrom, U. M.; Somfai, P. Synthesis 1998, 109–117; (b) Zwanenburg, B.;
ten Holte, P. Top. Curr. Chem. 2001, 93–124; (c) Watson, I. D. G.; Yu, L.; Yudin, A.
K. Acc. Chem. Res. 2006, 39, 194–206; (d) Fantauzzi, S.; Gallo, E.; Caselli, A.;
Piangiolino, C.; Ragaini, F.; Re, N.; Cenini, S. Chem. Eur. J. 2009, 15, 1241–1251;
(e) Tsang, S. D.; Yang, S.; Alphonse, F.-A.; Yudin, A. K. Chem. Eur. J. 2008, 14,
886–894; (f) Lowden, P. A. S. Org. Synth. 2006, 399–442; (g) Dahanukar, V. H.;
Zavialov, L. A. Curr. Opin. Drug Discov. 2002, 5, 918–927; (h) Ismail, F. M. D.;
Levitsky, D. O.; Dembitsky, V. M. Eur. J. Med. Chem. 2009, 44, 3373–3387; (i)
Stamm, H. J. Prakt. Chem. 1999, 341, 319–331; (j) Sweeney, J. B. In Science of
Synthesis; Enders, D., Ed.; Georg Thieme Verlag: Stuttgart, 2008; Vol. 40a, pp
643–772; (k) Pellissier, H. Tetrahedron 2010, 66, 1509–1555.
2. (a) Tanner, D. Angew. Chem., Int. Ed. Engl. 1994, 33, 599–619; (b) Pearson, W. H.;
Lian, B. W.; Bergmeier, S. C. In Comprehensive Heterocyclic Chemistry II; Padwa,
A., Ed.; Pergamon press: New York, 1980; Vol. 1A, pp 1–60; (c) Osborn, H. M. I.;
Sweeney, J. B. Tetrahedron: Asymmetry 1997, 8, 1693–1715; (d) McCoull, W.;
Davis, F. A. Synthesis 2000, 1347–1365; (e) Zwanenburg, B.; ten Holte, P. In
Stereoselective Heterocyclic Chemistry III; Metz, P., Ed.; Springer: Berlin, 2001; pp
93–124; (f) Sweeney, J. B. Chem. Soc. Rev. 2002, 31, 247–258; (g) Singh, G. S.;
D’hooghe, M.; De Kimpe, N. Chem. Rev. 2007, 107, 2080–2135; (h) Florio, S.;
Luisi, R. Chem. Rev. 2010, 110, 5128–5157; (i) Mumford, P. M.; Tarver, G. J.;
Shipman, M. J. Org. Chem. 2009, 74, 3573–3575; (j) Wynne, E. L.; Clarkson, G. J.;
Shipman, M. Tetrahedron Lett. 2008, 49, 250–252; (k) Ince, J.; Shipman, M.;
Ennis, D. S. Tetrahedron Lett. 1997, 38, 5887–5890.
34.0, 40.2, 46.8, 63.5, 128.5, 129.4, 133.0, 137.1. IR (NaCl, cmÀ1
) mmax = 1597,
1492, 1408, 1354, 1268, 1088, 1018. MS m/z (%) 215/7/9 (M+, 6), 180/2 (40),
126/8 (9), 125/7 (100), 98 (5), 92 (17), 90 (56), 89 (16), 75 (5), 63 (7), 55 (8).
18. De Kimpe, N.; Jolie, R.; De Smaele, D. J. Chem. Soc., Chem. Commun. 1994, 1221–
1222.
´
19. Stankovic, S.; D’hooghe, M.; De Kimpe, N. Org. Biomol. Chem. 2010, 8, 4266–
4273.
20. D’hooghe, M.; De Kimpe, N. Arkivoc 2008, 9, 6–19.
21. As a representative example, the synthesis of 2-chloromethyl-1-cyclohexyl-2-
methylaziridine 18a is described here. N-(2,3-Dichloro-2-methylpropylidene)
cyclohexylamine 17a (2.22 g, 10 mmol) was dissolved in methanol (30 ml),
after which NaBH4 (0.42 g, 1.1 mol equiv) was added in small portions at 0 °C,
and the mixture was stirred for 4 h under reflux. The reaction mixture was
poured into a 0.5 M solution of NaOH in H2O (20 ml) and extracted with CH2Cl2
(3 Â 20 ml). The combined organic extracts were washed with H2O (2 Â 15 ml)
and brine (20 ml). Drying (MgSO4), filtration of the drying agent and evaporation
of the solvent afforded 2-chloromethyl-1-cyclohexyl-2-methylaziridine 18a
(1.84 g, 98%), which was purified by distillation (Bp = 120–134 °C/19 mmHg)
in order to obtain an analytically pure sample. 2-Chloromethyl-1-cyclohexyl-2-
methylaziridine 18a: Bp = 120–134 °C/19 mmHg; Yield 98%; 1H NMR (60 MHz,
CDCl3) d 0.9–2.4 (13H, m), 1.33 (3H, s), 3.1–3.8 (2H, m). 13C NMR (125 MHz,
3. Hu, X. E. Tetrahedron 2004, 60, 2701–2743.
4. (a) Lee, W. K.; Ha, H.-J. Aldrichim. Acta 2003, 36, 57–63. and references cited
therein; (b) Katagiri, T.; Takahashi, M.; Fujiwara, Y.; Ihara, H.; Uneyama, K. J.
Org. Chem. 1999, 64, 7323–7329; (c) D’hooghe, M.; Van Speybroeck, V.;
Waroquier, M.; De Kimpe, N. Chem. Commun. 2006, 1554–1556; (d) Catak, S.;
D’hooghe, M.; De Kimpe, N.; Waroquier, M.; Van Speybroeck, V. J. Org. Chem.
CDCl3) d 12.5, 24.6, 24.9, 26.2, 32.8, 33.9, 38.2, 40.0, 54.7, 60.3. IR (NaCl, cmÀ1
max = 2922, 2850, 1450, 1383, 1259. MS m/z (%) 187/9 (M+, 5), 152 (100), 144/6
)
m
(6), 108 (6), 106 (13), 104 (17), 96 (6), 83 (10), 82 (8), 81 (8), 77 (99), 70 (98), 69
(13), 68 (10), 67 (8), 56 (26), 55 (51), 54 (11), 53 (9), 49 (11).