Molecular Pharmaceutics
Article
Calderon, M.; Haag, R.; Hwang, M. E.; Shum, V. W.; Pack, D. W.;
Smith, D. K. Degradable self-assembling dendrons for gene delivery:
experimental and theoretical insights into the barriers to cellular
uptake. J. Am. Chem. Soc. 2011, 133, 20288−20300. (e) Pierotti, M. A.;
Tamborini, E.; Negri, T.; Pricl, S.; Pilotti, S. Targeted therapy in GIST:
in silico modeling for prediction of resistance. Nat. Rev. Clin. Oncol.
2011, 8, 161−170. (f) Pavan, G. M.; Posocco, P.; Tagliabue, A.; Maly,
M.; Malek, A.; Danani, A.; Ragg, E.; Catapano, C. V.; Pricl, S. PAMAM
dendrimers for siRNA delivery: computational and experimental
insights. Chem.Eur. J. 2010, 16, 7781−7795. (g) Dileo, P.; Pricl, S.;
Tamborini, E.; Negri, T.; Stacchiotti, S.; Gronchi, A.; Posocco, P.;
Laurini, E.; Coco, P.; Fumagalli, E.; Casali, P. G.; Pilotti, S. Imatinib
response in two GIST patients carrying two hitherto functionally
uncharacterized PDGFRA mutations: an imaging, biochemical and
molecular modeling study. Int. J. Cancer 2011, 128, 983−990.
(h) Jones, S. P.; Pavan, G. M.; Danani, A.; Pricl, S.; Smith, D. K.
Quantifying the effect of surface ligands on dendron-DNA
interactions: insights into multivalency through a combined
experimental and theoretical approach. Chem.Eur. J. 2010, 16,
4519−4532. (i) Pierotti, M. A.; Negri, T.; Tamborini, E.; Perrone, F.;
Pricl, S.; Pilotti, S. Targeted therapies: the rare cancer paradigm. Mol.
Oncol. 2010, 4, 19−37. (j) Conca, E.; Negri, T.; Gronchi, A.;
Fumagalli, E.; Tamborini, E.; Pavan, G. M.; Fermeglia, M.; Pierotti, M.
A.; Pricl, S.; Pilotti, S. Activate and resist: L576P-KIT in GIST. Mol.
Cancer Ther. 2009, 8, 2491−2495. (k) Woodman, S. E.; Trent, J. C.;
Stemke-Hale, K.; Lazar, A. J.; Pricl, S.; Pavan, G. M.; Fermeglia, M.;
Gopal, Y. N.; Yang, D.; Podoloff, D. A.; Ivan, D.; Kim, K. B.;
Papadopoulos, N.; Hwu, P.; Mills, G. B.; Davies, M. A. Activity of
dasatinib against L576P KIT mutant melanoma: molecular, cellular,
and clinical correlates. Mol. Cancer Ther. 2009, 8, 2079−2085.
(l) Pavan, G. M.; Danani, A.; Pricl, S.; Smith, D. K. Modeling the
multivalent recognition between dendritic molecules and DNA:
understanding how ligand “sacrifice” and screening can enhance
binding. J. Am. Chem. Soc. 2009, 131, 9686−9694 and references
therein.
(35) Martin, W. R.; Eades, C. E.; Thompson, J. A.; Huppler, R. E.
The effects of morphine- and nalorphine-like drugs in the non-
dependent and morphine-dependent chronic spinal dog. J. Pharmacol.
Exp. Ther. 1976, 197, 517−532.
(36) Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew,
R. K.; Goodsell, D. S.; Olson, A. J. AutoDock4 and AutoDockTools4:
Automated docking with selective receptor flexibility. J. Comput. Chem.
2009, 30, 2785−2791.
(37) Mehler, E. L.; Solmajer, T. Electrostatic effects in proteins:
comparison of dielectric and charge models. Protein Eng. 1991, 4,
903−910.
(38) (a) Onufriev, A.; Bashford, D.; Case, D. A. Modification of the
generalized born model suitable for macromolecules. J. Phys. Chem. B
2000, 104, 3712−3720. (b) Feig, M.; Onufriev, A.; Lee, M. S.; Im, W.;
Case, D. A.; Brooks, C. L. Performance comparison of generalized
born and Poisson methods in the calculation of electrostatic solvation
energies for protein structures. J. Comput. Chem. 2004, 25, 265−284.
(39) Case, D. A.; Darden, T. A.; Cheatham, T. E., III.; Simmerling, C.
L.; Wang, J.; Duke, R. E.; Luo, R.; Walker, R. C.; Zhang, W.; Merz, K.
M.; Roberts, B.; Wang, B.; Hayik, S.; Roitberg, A.; Seabra, G.;
́
Kolossvary, I.; Wong, K. F.; Paesani, F.; Vanicek, J.; Wu, X.; Brozell, S.
R.; Steinbrecher, T.; Gohlke, H.; Cai, Q.; Ye, X.; Wang, J.; Hsieh, M.-
J.; Cui, G.; Roe, D. R.; Mathews, D. H.; Seetin, M. G.; Sagui, C.; Babin,
V.; Luchko, T.; Gusarov, S.; Kovalenko, A.; Kollman, P. A. AMBER 11;
University of California: San Francisco, CA, USA, 2010.
(40) (a) Felluga, F.; Pitacco, G.; Valentin, E.; Coslanich, A.;
Fermeglia, M.; Ferrone, M.; Pricl, S. Studying enzyme enantiose-
lectivity using combined ab initio and free energy calculations: α-
chymotrypsin and methyl cis- and trans-5-oxo-2-pentylpirrolidine-3-
carboxylates. Tetrahedron: Asymmetry 2003, 14, 3385−3399.
(b) Frecer, V.; Kabelac, M.; De Nardi, P.; Pricl, S.; Miertus, S.
́ ̌ ̌
Structure-based design of inhibitors of NS3 serine protease of hepatitis
C virus. J. Mol. Graphics Modell. 2004, 22, 209−220.
(41) Jakalian, A.; Bush, B. L.; Jack, D. B.; Bayly, C. I. Fast, efficient
generation of high-quality atomic charges. AM1-BCC model: I.
Method. J. Comput. Chem. 2000, 21, 132−146.
(25) Selzer, T.; Albeck, S.; Schreiber, G. Rational design of faster
associating and tighter binding protein complexes. Nat. Struct. Biol.
2000, 7, 537−541.
(42) Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M. C.; Xiong, G.; Zhang,
W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.; Caldwell, J.; Wang, J.;
Kollman, P. A. Point-charge force field for molecular mechanics
simulations of proteins based on condensed-phase quantum
mechanical calculations. J. Comput. Chem. 2003, 24, 1999−2012.
(43) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D.
A. Development and testing of a general amber force field. J. Comput.
Chem. 2004, 25, 1157−1174.
(44) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R.
W.; Klein, M. L. Comparison of simple potential functions for
simulating liquid water. J. Chem. Phys. 1983, 79, 926−935.
(45) Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C. Numerical
integration of the cartesian equations of motion of a system with
constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977,
23, 327−341.
(26) Sulea, T.; Purisima, E. O. Optimizing ligand charges for
maximum binding affinity. A solvated interaction energy approach. J.
Phys. Chem. B 2001, 105, 889−899.
(27) Kangas, E.; Tidor, B. Optimizing electrostatic affinity in ligand-
receptor binding: Theory, computation, and ligand properties. J. Chem.
Phys. 1998, 109, 7522−7545.
(28) Lee, L. P.; Tidor, B. Optimization of binding electrostatics:
charge complementarity in the barnase-barstar protein complex.
Protein Sci. 2001, 10, 362−377.
(29) Gohlke, H.; Kiel, C.; Case, D. A. Insights into protein-protein
binding by binding free energy calculation and free energy
decomposition for the Ras-Raf and Ras-RalGDS complexes. J. Mol.
Biol. 2003, 330, 891−913.
(30) Massova, I.; Kollman, P. A. Computational alanine scanning to
probe protein-protein interactions: A novel approach to evaluate
binding free energies. J. Am. Chem. Soc. 1999, 121, 8133−8143.
(31) Huo, S.; Massova, I.; Kollman, P. A. Computational alanine
scanning of the 1:1 human growth hormone-receptor complex. J.
Comput. Chem. 2002, 23, 15−27.
(32) Palmer, C. P.; Mahen, R.; Schnell, E.; Djamgoz, M. B. A.; Aydar,
E. Sigma-1 receptors bind cholesterol and remodel lipid rafts in breast
cancer cell lines. Cancer Res. 2007, 67, 11166−11175.
(33) Zampieri, D.; Mamolo, M. G.; Laurini, E.; Zanette, C.; Florio,
C.; Collina, S.; Urbano, M.; Azzolina, O.; Vio, L. Substituted
benzo[d]oxazol-2(3H)-one derivatives with preference for the
sigma1 binding site. Eur. J. Med. Chem. 2009, 44, 124−30.
(34) Hellewell, S. B.; Bruce, A.; Feinstein, G.; Orringer, J.; Williams,
W.; Bowen, W. D. Rat liver and kidney contain high densities of sigma
1 and sigma 2 receptors: characterization by ligand binding and
photoaffinity labeling. Eur. J. Pharmacol. 1994, 268, 9−18.
(46) Toukmaji, A.; Sagui, C.; Board, J.; Darden, T. Efficient particle-
mesh Ewald based approach to fixed and induced dipolar interactions.
J. Chem. Phys. 2000, 113, 10913−10927.
(47) Gilson, M. K.; Sharp, K. A.; Honig, B. H. Calculating the
electrostatic potential of molecules in solution: Method and error
assessment. J. Comput. Chem. 1988, 9, 327−335.
(48) Sitkoff, D.; Sharp, K. A.; Honig, B. Accurate calculation of
hydration free energies using macroscopic solvent models. J. Phys.
Chem. 1994, 98, 1978−1988.
(49) Sanner, M. F.; Olson, A. J.; Spehner, J. C. Reduced surface: an
efficient way to compute molecular surfaces. Biopolymers 1996, 38,
305−320.
(50) Wilson, E. B.; Decius, J. C.; Cross, P. C. Molecular Vibrations;
McGraw-Hill: New York, NY, 1995.
(51) Tsui, V.; Case, D. A. Theory and applications of the Generalized
Born solvation model in macromolecular simulations. Biopolymers
2000, 56, 275−291.
3125
dx.doi.org/10.1021/mp300233y | Mol. Pharmaceutics 2012, 9, 3107−3126