J. Yang et al. / Tetrahedron Letters 52 (2011) 4675–4677
4677
Ph
Ph
OMe
OMe
HN
F3C
HN
KOH
CO2Et
F3C
CO2H
MeOH/H2O
99%
3a (dr > 20:1)
4
NH2
CO2H
F3C
Pd/C, H2 (10 atm),
MeOH, 85%
5
Scheme 2. Synthesis of (S)-a-Tfm-Phe 5 and X-ray crystal structure of compound 4.
Supplementary data
R1O
Cl Zn
F3C
O
Ph
Cl
Mg
Ph
OMe
HN
F3C
Supplementary data (detailed experimental procedures, and
characterization data for new compounds) associated with this
article can be found, in the online version, at doi:10.1016/
Cl
O
H
CO2R1
R
N
R2
Scheme 3. The mechanistic proposal on stereocontrol.
References and notes
yields with high dr values (Table 2, entries 7–10). It is noteworthy
that these functional groups, TMSE, allyl, and propargyl, in -Tfm-
AAs can subsequently be applied for further functionalization, pro-
viding opportunities to access diverse -Tfm-AAs derivatives.
Unfortunately, when -phenyl ketoimine ester 1f was investigated,
poor yield was obtained even at room temperature, thus indicating
that an electron-deficient group, such as CF3, in the ketoimine, is
critical for the reaction efficiency (Table 2, entry 11).
1. For recent reviews, see: (a) Smart, B. E. J. Fluorine Chem. 2001, 109, 3; (b)
Maienfisch, P.; Hall, R. G. Chimia 2004, 58, 93; (c) Special issue on ‘‘Fluorine in
the Life Sciences’’, ChemBioChem 2004, 5, 557.; (d) Purser, S.; Moore, P. R.;
Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320; (e) Amii, H.;
Uneyama, K. Chem. Rev. 2009, 109, 2119.
2. (a) Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications;
Wiley-VCH: Weinheim, 2004; (b) Hiyama, T.; Kanie, K.; Kusumoto, T.;
Morizawa, Y.; Shimizu, M. Organofluorine Compounds Chemistry and
Applications; Springer: Berlin, 2000; (c)Biomedical Frontiers of Fluorine
Chemistry, ACS Symposium Series 639; Ojima, I., McCarthy, J. R., Welch, J. T.,
Eds.; American Chemical Society: Washington, DC, 1996.
a
a
a
The absolute configuration of quaternary chiral center in a-ben-
3. (a) Welch, J. T.; Gyenes, A.; Jung, M. J. In General Features of Biological Activity of
Fluorinated Amino Acids: Design, Pharmacology and Biochemistry; Kuhhar, V. P.,
Soloshonok, V. A., Eds.; John Wiley & Sons: Chichester, 1995; pp 311–331; (b)
Smits, R.; Koksch, B. Curr. Top. Med. Chem. 2006, 16, 1483.
zyl
a-Tfm-AAs 3 was determined to be S by the X-ray crystallo-
graphic analysis of 4.12 As depicted in Scheme 2, compound 4
was synthesized from 3a (dr >20:1) by treatment of KOH. Subse-
quently, hydrogenation of 4 in the presence of Pd/C afforded enan-
4. (a) Pozzo, A. D.; Ni, M.; Muzi, L.; Castiglione, R.; Mondelli, R.; Mazzini, S.; Penco,
S.; Pisano, C.; Castorina, M.; Giannini, G. J. Med. Chem. 2006, 49, 1808; (b)
Burger, K.; Mutze, K.; Hollweck, W.; Koksch, B. Tetrahedron 1998, 54, 5915.
5. (a) Bravo, P.; Buche, L.; Pesenti, C.; Viani, F.; Volonterio, A.; Zanda, M. J. Fluorine
Chem. 2011, 112, 153; (b) Margiotta, N.; Papadia, P.; Lazzaro, F.; Crucianelli, M.;
De Angelis, F.; Pisano, C.; Vesci, L.; Natile, G. J. Med. Chem. 2005, 48, 7821.
6. Yoder, N. C.; Kumar, K. Chem. Soc. Rev. 2002, 31, 335; Lazzaro, F.; Crucianelli, M.;
De Angelis, F.; Frigerio, M.; Malpezzi, L.; Volonterio, A.; Zanda, M. Tetrahedron:
Asymmetry 2004, 15, 889; Papeo, G.; Giordano, P.; Brasca, M. G.; Buzzo, F.;
Caronni, D.; Ciprandi, F.; Mongelli, N.; Veronesi, M.; Vulpetti, A.; Dalvit, C. J. Am.
Chem. Soc. 2007, 129, 5665.
7. For reviews, see: (a) Smits, R.; Cadicamo, C. D.; Burger, K.; Koksch, B. Chem. Soc.
Rev. 2008, 37, 1727; (b) Fustero, S.; Sanz-Cervera, J. F.; Acena, J. L.; Sanchez-
Rosello, M. Synlett 2009, 525.
8. (a) Bravo, P.; Crucianelli, M.; Vergani, B.; Zanda, M. Tetrahedron Lett. 1998, 39,
7771; (b) Asensio, A.; Bravo, P.; Crucianelli, M.; Farina, A.; Fustero, S.; Soler, J.
G.; Meille, S. V.; Panzeri, W.; Viani, F.; Volonterio, A.; Zanda, M. Eur. J. Org. Chem.
2001, 1449.
9. Min, Q.-Q.; He, C.-Y.; Zhou, H.; Zhang, X. Chem. Commun. 2010, 46, 8029.
10. (a) Piller, F. M.; Metzger, A.; Schade, M. A.; Haag, B. A.; Gavryushin, A.; Knochel,
P. Chem. Eur. J. 2009, 15, 7192; (b) Metzger, A.; Bernhardt, S.; Manolikakes, G.;
Knochel, P. Angew. Chem., Int. Ed. 2010, 49, 4665; For diastereoselective
addition of Knochel type benzylzinc reagents to N-tert-butanesulfinyl
aldimines, see: (c) Buesking, A. W.; Baguley, T. D.; Ellman, J. A. Org. Lett.
2011, 13, 964.
11. Benzylzinc reagents were prepared according Knochel’s procedure, see Ref. 10.
12. CCDC 821663 contains the supplementary crystallographic data for compound
4. This data can be obtained free of charge from the Cambridge
13. The configuration of ketoimine ester 1a is E. For the assignment of the
configuration of 1a, see: Chaume, G.; Van Severen, M.-C., Marinkovic, S.;
Brigaud, T. Org. Lett. 2006, 8, 6123. However, in our previous work (see Ref. 9), a
Z configuration of 1a was drawn in the transition state. In this case, we thought
that probably, there is an equilibrium between E-1a and Z-1a under the
reaction conditions, and Z configuration is preferred in the transition state.
However, an alternative transition state might be possible, see Supplementary
data.
tioenriched (S)-a
-Tfm-Phe 58 in 85% yield, demonstrating the
synthetic utility of this method.
On the basis of our preliminarily results and Knochel’s research
work that MgCl2 may function as Lewis acid and can chelate with
carbonyl group to form a six-member ring chelation state,10b we
proposed a highly restricted chair transition state for explanation
of the high diastereoselectivity obtained in the reaction, in which
Mg coordinates with C@N, MeO of imine, and carbonyl group of es-
ter, which induces the benzylzinc reagents to attack the steric less
hindered Re face to generate S configuration stereoselectively13
(Scheme 3).
In conclusion, we have developed an effective and facile method
for highly diastereoselective synthesis of quaternary a-Tfm-AAs in
good yields with high diastereoselectivities by addition of Knochel
type benzylzinc reagents to (R)-phenylglycinol methyl ether based
imines of trifluoropyruvate. Although 3.0–5.0 equiv of benzyl zinc
reagents were used, the low cost and ready availability of benzyl
chlorides and the ease of preparation of Knochel type benzylzinc
reagents make this protocol useful for application in peptides
and related chemistry. Further studies to expand the substrates
scope and their applications in synthesis and evaluation of bioac-
tive compounds are currently in progress.
Acknowledgments
The NSFC (Nos. 20902100 and 20832008), the Shanghai Rising-
Star Program (09QA1406900) and SIOC are greatly acknowledged
for funding this work.