present in some agricultural products,4k,l it is not practical
to obtain them in large amounts for downstream usage.
Consequently, the exploitation of simple methods for the
synthesis of this kind of compound and its derivatives are
becoming extremely important.
our whole society makes every effort to save energy and
reduce emission.
Clearly, a mild, straightforward, and broadly applicable
method for the formation of trifluoromethylated furans is
highly desired. There are several significant issues that
must be addressed to develop a useful method for this
purpose. These issues include the following: (1) the ex-
ploration of time and energy economy for the process; (2)
the development of efficient and step-economical7 methods
withhighyields, preferably metal-free cascade approaches;
(3) the use of low-cost, reliable, and simple CF3 sources; (4)
the development of a facile method with a broad substrate
scope which can be easily adapted to scale-up; (5) the
addition of one more functional group onto the furan ring
to provide novel opportunities for drug design and dis-
covery. Herein, we report our preliminary findings toward
solving these challenging problems.
However, despite the pharmaceutical importance of
trifluoromethylated furans, only very few methods have
been reported for the synthesis of this kind of compound
due to the difficulty in constructing these molecules,5 and
these limited methods heavily involvedthe use of transition
metals and required energy-consuming high temperatures.
Furthermore, the synthesis of functionalized trifluoro-
methylated furans mainly requires multiple steps and
specially tailored building blocks. Thus, these synthesis
methods, to the best of our knowledge, still suffer from
several disadvantages, such as high temperatures, very low
product yields, time-consuming multiple synthesis steps,
and use of toxic transition metals and special reagents.5
Notably, a much more practical problem is that almost all
ofthese reported approaches have been limited insubstrate
selection.6 Particularly, time and energy economy are
important aspects of streamlining a synthesis route since
Table 1. Optimization of Reaction Conditionsa
(4) Selected examples from the extensive recent patent literature: (a)
Inoue, T.; Watanabe, S.; Yamagishi, T.; Arano, Y.; Morita, M.;
Shimada, K. WO 2010137351, 2010. (b) Yoakim, C.; Bailey, M. D.;
Bilodeau, F.; Carson, R. J.; Fader, L.; Kawai, S.; Laplante, S.; Simoneau, B.;
Surprenant, S.; Thibeault, C.; Tsantrizos, Y. S. WO 2010130034, 2010. (c)
Griffioen, G.; Van Dooren, T.; Rojas de la Parra, V.; Marchand, A.; Allasia, S.;
Kilonda, A.; Chaltin, P. WO 2010142801, 2010. (d) Sutton, A. E.; Richardson,
T. E.; Huck, B. R.; Karra, S. R.; Chen, X.; Xiao, Y. ; Goutopoulos, A.; Lan, R.;
Perrey, D.; Vandeveer, H. G.; Liu-Bujalski, L.; Stieber, F.; Hodous, B. L.; Qiu,
H.; Jones, R. C.; Heasley, B. WO 2010093419, 2010. (e) Knust, H.;
Nettekoven, M.; Pinard, E.; Roche, O.; Rogers-Evans, M. US 20090163485,
2009. (f) Sakai, N.; Imamura, S.; Miyamoto, N.; Hirayama, T. WO
2008016192, 2008. (g) Gould, A. E.; Greenspan, P. D.; Vos, T. J. WO
2008030448, 2008. (h) George, D. M.; Dixon, R. W.; Friedman, M.; Hobson,
A.; Li, B.; Wang, L.; Wu, X.; Wishart, N. WO 2008060621, 2008; (i) Bauer,
U.; Brailsford, W.; Gustafsson, L; Svensson, T. WO 2007073300, 2007. (j)
Bolin, D. R.; Cheung, A. W.-H.; Firooznia, F.; Hamilton, M. M.; Li, S.;
McDermott, L. A.; Qian, Y.; Yun, W. WO 2007060140, 2007. (k) Witschel,
M.; Zagar, C.; Hupe, E.; Kuehn, T.; Moberg, W. K.; Parra Rapado, L.; Stelzer,
F.; Vescovi, A.; Rack, M.; Reinhard, R.; Sievernich, B.; Grossmann, K.;
Ehrhardt, T. WO 2006125687, 2006. (l) Mansfield, D.; Rieck, H.; Coqueron,
P.-Y.; Desbordes, P.; Villier, A.; Grosjean-Cournoyer, M.-C.; Genix, P. WO
2006108791, 2006. (m) Borcherding, D. R.; Gross, A.; Shum, P. W.-K.;
Willard, N.; Freed, B. S. WO 2004100946, 2004. (n) Hamamura, K.; Sasaki,
S.; Amano, Y.; Sakamoto, J.; Fukatsu, K. WO 2004022551, 2004.
entry
solvent
x mol (%)
time
yield (%)b
1
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
toluene
CH3CN
CH2Cl2
CH2Cl2
CH2Cl2
10
5
<1 min
<1 min
<1 min
<1 min
<1 min
<1 min
<1 min
<1 min
<1 min
95
91
93
95
89
91
94
93
99
2
3
1
4
0
5
0
6
0
7c
8d
9e
0
0
0
a Unless otherwise noted, the reactions were performed with 1a (0.20
mmol), TFAA (0.26 mmol), PPh3 (0.24 mmol), and DMAP (x mol %) in
solvent (1.0 mL) at room temperature within 1 min. b Yield of isolated
product. c 1.5 equiv of PPh3 was used. d 1.0 equiv of PPh3 was used. e 1.0 equiv
of PPh3 and 1.5 equiv of TFAA were used. equiv = equivalent, TFAA =
trifluoroacetic anhydride, DMAP = 4-dimethylaminopyridine.
(5) For an excellent review: (a) Petrov, V. A. Fluorinated Heterocyclic
Compounds: Synthesis, Chemistry, and Applications; Wiley: Hoboken, NJ,
2009 and references cited therein; for selected examples: (b) Kino, T.;
Nagase, Y.; Ohtsuka, Y.; Yamamoto, K.; Uraguchi, D.; Tokuhisa, K.;
Yamakawa, T. J. Fluorine Chem. 2010, 131, 98. (c) Pang, W.; Zhu, S.;
Xin, Y.; Jiang, H.; Zhu, S. Tetrahedron 2010, 66, 1261. (d) Zhang, D.;
Yuan, C. Eur. J. Org. Chem. 2007, 3916. (e) Bouillon, J.-P.; Kikelj, V.;
Tinant, B.; Harakat, D.; Portella, C. Synthesis 2006, 1050. (f) Aristov,
S. A.; Vasil’ev, A. V.; Rudenko, A. P. Russ. J. Org. Chem. 2006, 42, 66.
Initially, we considered a practical question of whether
or not the direct and synthetically efficient transfer of a
CF3 group from trifluoroacetic anhydride (TFAA), one of
the most common reagents, would be possible, since
TFAA were previously employed in the construction of
special building blocks and yet had not been used directly
in the process of synthesis of trifluoromethylated aromatic
compounds. Then we examined the reaction of easily
available compound 1a8 with TFAA in the presence of
PPh3 and a catalytic amount of DMAP in CH2Cl2 at room
temperature (Table 1, entry 1). To our delight, the reaction
ꢀ
(g) Bouillon, J.-P.; Henin, B.; Huot, J.-F.; Portella, C. Eur. J. Org. Chem.
2002, 1556. (h) Linderman, R. J.; Jamois, E. A.; Tennyson, S. D. J. Org.
Chem. 1994, 59, 957. (i) Begue, J.-P.; Bonnet-Delpon, D.; Dogbeavou,
R.; Ourevitch, M. J. Chem. Soc., Perkin Trans. 1 1993, 2787. (j) Bucci,
R.; Laguzzi, G.; Pompili, M. L.; Speranzia, M. J. Am. Chem. Soc. 1991,
113, 4544. (k) Sawada, H.; Nakayama, M. J. Fluorine Chem. 1990, 46,
423. (l) Neumann, D.; Kischkewitz, J. J. Fluorine Chem. 1990, 46, 265.
(m) Jullien, J.; Pechine, J. M.; Perez, F.; Piade, J. J. Tetrahedron 1982, 38,
1413. (n) Bambury, R. E.; Yaktin, H. K.; Wyckoff, K. K. J. Heterocycl.
Chem. 1968, 5, 95.
(6) To the best of our knowledge, there are only two methods
reported thus far that investigated more than five different substrates
(see ref 5c and 5d) and many cases only employed one or two substrates
(see ref 5).
(7) (a) Wender, P. A.; Miller, B. L. Nature 2009, 460, 197. (b) Wender,
P. A.; Verma, V. A.; Paxton, T. J.; Pillow, T. H. Acc. Chem. Res. 2008,
41, 40.
(8) (a) Nair, V.; Sreekanth, A. R.; Abhilash, N.; Biju, A. T.; Devi,
B. R.; Menon, R. S.; Rath, N. P.; Srinivasc, R. Synthesis 2003, 1895. (b)
Li, C.-Q.; Shi, M. Org. Lett. 2003, 5, 4273.
Org. Lett., Vol. 13, No. 19, 2011
5347