Organometallics
Article
data for the structural analysis of 1 have been deposited at the
Cambridge Crystallographic Data Center (CCDC number 1497028).
These data can be obtained free of charge from the Cambridge
Crystallographic Data Center.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Synthesis of (cAAC)Fe(CO)4 (1). In a glovebox, an oven-dried 50
mL Schlenk flask was charged with Fe2(CO)9 (200 mg, 0.55 mmol)
and cyclic (alkyl)amino carbene (cAAC) (286 mg, 1 mmol). Then the
Schlenk flask was taken out from the glovebox, connected to the
Schlenk line and dry toluene (25 mL) was added via a cannula at 25
°C under an argon atmosphere to this reaction mixture. The reaction
mixture was stirred overnight, and during the course of the reaction,
the color changed to yellow. Then the reaction mixture was filtered
through a celite pad and concentrated to ca. 5 mL. Storage of this
reaction mixture at −20 °C for 3 days afforded yellow crystals (185
mg, 0.43 mmol, 43%). Anal. Calcd for C24H31FeNO4: C, 63.58; H,
6.89; N, 3.09. Found: C, 63.62; H, 6.82; N, 3.04. IR (film, γCO in
S.K.M. thanks the SERB of India (DST, No. SR/S1/IC-25/
2012) for financial support. M.B. and G.V. thank the UGC,
New Delhi, India, for research fellowships. D.A. acknowledges
support from the computational facility at Indiana University,
Bloomington, IN, USA.
REFERENCES
■
(1) (a) Modern Acetylene Chemistry; Stang, P. J., Diederich, F., Eds.;
VCH: New York, 1995. (b) Zhang, W.; Zheng, S.; Liu, N.; Werness, J.
B.; Guzei, I. A.; Tang, W. J. Am. Chem. Soc. 2010, 132, 3664−3665.
(c) Kong, J.-R.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2006, 128,
1
cm−1): 2005, 1922, 1884. H NMR (C6D6, 500 MHz, 298 K): δ 7.22
718−719. (d) Wessig, P.; Muller, G. Chem. Rev. 2008, 108, 2051−
̈
(t, 1H, J = 8 Hz), 7.08 (d, 2H, J = 7.5 Hz), 2.65 (sept, 2H, J = 6.5 Hz),
1.49 (d, 6H, J = 6.5 Hz), 1.48 (s, 6H), 1.43 (s, 2H), 1.11 (d, 6H, J =
6.5 Hz), 0.84 (s, 6H) ppm. 13C NMR (C6D6, 125 MHz, 298 K): δ
215.8, 146.7, 137.9, 130.4, 128.4, 126.1, 78.5, 60.0, 51.5, 31.5, 29.3,
29.2, 25.9, 24.6 ppm.
2063. (e) Campbell, K.; Kuehl, C. J.; Ferguson, M. J.; Stang, P. J.;
Tykwinski, R. R. J. Am. Chem. Soc. 2002, 124, 7266−7267.
(f) Nicolaou, K. C.; Dai, W. M.; Tsay, S. C.; Estevez, V. A.;
Wrasidlo, W. Science 1992, 256, 1172−1178. (g) Goldberg, I. H. Acc.
Chem. Res. 1991, 24, 191−198. (h) Kim, H.; Lee, H.; Lee, D.; Kim, S.;
Kim, D. J. Am. Chem. Soc. 2007, 129, 2269−2274.
Synthesis of (cAAC)Fe(CO)3(PhCCH) (3). In a glovebox, an oven-
dried 25 mL Schlenk flask was charged with complex 1, (cAAC)Fe-
(CO)4 (70 mg, 0.1544 mmol), in 3 mL of benzene. Then
phenylacetylene (22.0 μL, 0.2 mmol, 1.3 equiv) was added, and the
reaction mixture was heated to 90 °C for 10 h. After completion of the
reaction, the dark red solution was separated from the reaction mixture
simply by decantation. Then the supernatant was evaporated to
dryness and washed twice with cold hexane to afford the dark red
complex 3 (36.6 mg, 0.0694 mmol, 48%). ESI-MS: m/z calcd for
C31H37FeNO3H [M + H]+ 528.2201, found 528.2206. IR (film, γCO in
(2) (a) Negishi, E.; Anastasia, L. Chem. Rev. 2003, 103, 1979−2017.
́
(b) Chinchilla, R.; Najera, C. Chem. Rev. 2007, 107, 874−922.
(c) Ranu, B. C.; Adak, L.; Chattopadhay, K. J. Org. Chem. 2008, 73,
5609−5612. (d) Deussen, H.-J.; Jeppesen, L.; Scharer, N.; Junager, F.;
̈
Bentzen, B.; Weber, B.; Weil, V.; Mozer, S. J.; Sauerberg, P. Org.
Process Res. Dev. 2004, 8, 363−371. (e) Stille, J. K.; Simpson, J. H. J.
Am. Chem. Soc. 1987, 109, 2138−2152. (f) Masuda, Y.; Murata, M.;
Sato, K.; Watanabe, S. Chem. Commun. 1998, 807−808. (g) Yan, W.;
Ye, X.; Akhmedov, N. G.; Petersen, J. L.; Shi, X. Org. Lett. 2012, 14,
2358−2361. (h) Ahammed, S.; Kundu, D.; Ranu, B. C. J. Org. Chem.
2014, 79, 7391−7398.
1
cm−1): 2039, 1988, 1926. H NMR (C6D6, 400 MHz, 298 K): δ 7.60
(br s, 1H), 7.39 (br s, 1H), 7.11−6.78 (m, 6H), 3.37 (br s, 2H), 3.05
(br s, 1H), 2.16−1.75 (m, 2H), 1.47−1.16 (m, 6H), 1.16−0.96 (m,
12H), 0.87−0.77 (m, 6H) ppm. 13C NMR (C6D6, 125 MHz, 298 K): δ
222.8, 208.7, 171.9, 132.2, 130.9, 129.0, 128.8, 128.0, 127.4, 127.2,
122.7, 96.2, 82.2, 79.9, 78.7, 66.5, 59.4, 32.1, 29.2, 28.3, 26.4 ppm.
DEPT-135 (C6D6, 125 MHz, 298 K): δ 132.2, 129.0, 128.8, 127.4,
127.2, 96.2, 78.7, 66.5, 59.4 (CH2), 32.1, 29.2, 28.3 ppm.
General Procedure for Catalytic Dimerization of Arylalkynes
to 1,3-Enynes by (cAAC)Fe(CO)4 (1). In an oven-dried 25 mL
sealed tube equipped with a magnetic stirrer inside the glovebox,
complex 1 (0.2 mol %) was dissolved in 1.0 mL of toluene followed by
addition of KOtBu (224.4 mg, 2.0 mmol, 2 equiv). Then arylacetylene
(1.0 mmol, 1 equiv) was added. The mixture was heated to 120 °C for
4 h. After cooling the reaction mixture, the solvent was removed and
the crude product was purified by silica gel column chromatography
using distilled n-hexanes as eluent to give (E+Z)-1,4-diarylbut-1,3-
enyne.
(3) (a) Trost, B. M. Science 1991, 254, 1471−1477. (b) Trost, B. M.
Angew. Chem., Int. Ed. 1995, 34, 259−281.
(4) (a) Ogata, K.; Toyota, A. J. Organomet. Chem. 2007, 692, 4139−
4146. (b) Conifer, C.; Gunanathan, C.; Rinesch, T.; Hcļ scher, M.;
Leitner, W. Eur. J. Inorg. Chem. 2015, 2015, 333−339. (c) Powała, B.;
Pietraszuk, C. Catal. Lett. 2014, 144, 413−418. (d) Katayama, H.; Yari,
H.; Tanaka, M.; Ozawa, F. Chem. Commun. 2005, 4336−4338.
(e) Kawata, A.; Kuninobu, V.; Takai, K. Chem. Lett. 2009, 38, 836−
837. (f) Ogoshi, S.; Ueta, M.; Oka, M.; Kurosawa, H. Chem. Commun.
2004, 2732−2733. (g) Trost, B. M.; Masters, J. T. Chem. Soc. Rev.
2016, 45, 2212−2238.
(5) (a) Nishiura, M.; Hou, Z.; Wakatsuki, Y.; Yamaki, T.; Miyamoto,
T. J. Am. Chem. Soc. 2003, 125, 1184−1185. (b) Komeyama, K.;
Kawabata, T.; Takehira, K.; Takaki, K. J. Org. Chem. 2005, 70, 7260−
7266. (c) Ge, S.; Norambuena, V. F. Q.; Hessen, B. Organometallics
2007, 26, 6508−6510.
(6) (a) Midya, G. C.; Paladhi, S.; Dhara, K.; Dash, J. Chem. Commun.
2011, 47, 6698−6700. (b) Rivada-Wheelaghan, O.; Chakraborty, S.;
Shimon, L. J. W.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed.
2016, 55, 6942−6945. (c) Midya, G.; Parasar, B.; Dhara, K.; Dash, J.
Org. Biomol. Chem. 2014, 12, 1812−1822.
(7) (a) Sau, S. C.; Santra, S.; Sen, T. K.; Mandal, S. K.; Koley, D.
Chem. Commun. 2012, 48, 555−557. (b) Sau, S. C.; Roy, S. R.; Sen, T.
K.; Mullangi, D.; Mandal, S. K. Adv. Synth. Catal. 2013, 355, 2982−
2991. (c) Roy, S. R.; Sau, S. C.; Mandal, S. K. J. Org. Chem. 2014, 79,
9150−9160. (d) Hota, P. K.; Vijaykumar, G.; Pariyar, A.; Sau, S. C.;
Sen, T. K.; Mandal, S. K. Adv. Synth. Catal. 2015, 357, 3162−3170.
(e) Vijaykumar, G.; Mandal, S. K. Dalton Trans. 2016, 45, 7421−7426.
(f) Bhunia, M.; Hota, P. K.; Vijaykumar, G.; Adhikari, D.; Mandal, S.
K. Organometallics 2016, 35, 2930−2937.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
Experimental procedure, spectroscopic data, and scanned
X-ray crystallographic data for 1 (CIF)
Calculations and Cartesian coordinates of calculated
(8) (a) N-Heterocyclic Carbenes in Transition Metal Catalysis. In
Topics in Organometallic Chemistry; Glorius, F., Ed.; Springer: Berlin,
2007; Vol. 21. (b) Lavallo, V.; Canac, Y.; Prasang, C.; Donnadieu, B.;
Bertrand, G. Angew. Chem., Int. Ed. 2005, 44, 5705−5709. (c) Martin,
D.; Canac, Y.; Lavallo, V.; Bertrand, G. J. Am. Chem. Soc. 2014, 136,
AUTHOR INFORMATION
■
Corresponding Authors
E
Organometallics XXXX, XXX, XXX−XXX