Ha in the mixture (7.59 ppm) nearly matched with that of Ha
protons (7.60 ppm) when the experiment was carried out with
DAN-1 only. This clearly suggests that in the mixed system both
NDI-1 and DAN-1 maintain their identity in terms of self-
assembly. However as no signal due to Hb could be observed,
the experiments were performed at slightly higher temperature
(50 1C) hoping that slight destabilization of the aggregates will
cause appearance of Hb protons. In Fig. 3 it can be seen
indeed that the Hb signal is now visible at 8.36 ppm whereas
the Ha signal appeared at 7.69 ppm. Both these signals still
were significantly upfield shifted compared to those in CDCl3,
suggesting the existence of self-assembly, even at 50 1C. More
importantly, when the signals for Ha and Hb were compared
with the corresponding signals for the experiments with
individual gels, the respective chemical shift values were found
to be almost identical, clearly illustrating orthogonal self-
assembly of NDI-1 and DAN-1 in their mixture. Further for
DAN-1, going from CDCl3 to TCE, we observed a downfield
shift of the peak due to the amide proton, which at elevated
temperature experienced an upfield shift (Fig. S6w) as one
would expect for formation and disruption of H-bonding,
respectively. At no stage did we observe splitting of the amide
peak so indicating that both the amides were equally involved
in H-bonding.
2 (a) S. Bhattacharya and S. K. Samanta, Langmuir, 2009, 25, 8378;
(b) H. Engelkamp, S. Middelbeek and R. J. M. Nolte, Science,
1999, 284, 785; (c) F. S. Schoonbeek, J. H. van Esch, B. Wegewijs,
D. B. A. Rep, M. P. De Haas, T. M. Klapwijk, R. M. Kellogg and
B. L. Feringa, Angew. Chem., Int. Ed., 1999, 38, 1393;
(d) A. Ajayaghosh and V. K. Praveen, Acc. Chem. Res., 2007,
´
40, 644, and references therein; (e) J. P-Luis, V. Laukhin, A. P. del
Pino, J. V. Gancedo, C. Rovira, E. Laukhina and D. B. Amabilino,
Angew. Chem., Int. Ed., 2007, 46, 238; (f) K. Sugiyasu, N. Fujita
and S. Shinkai, Angew. Chem., Int. Ed., 2004, 43, 1229;
(g) S. Ghosh, X.-Q. Li, V. Stepanenko and F. Wurthner,
¨
Chem.–Eur. J., 2008, 14, 11343; (h) S. Yagai, M. Ishii, T. Karatsu
and A. Kitamura, Angew. Chem., Int. Ed., 2007, 46, 8005.
3 For recent reviews on organogels, see: (a) M.-O. M. Piepenbrock,
G. O. Lloyd, N. Clarke and J. W. Steed, Chem. Rev., 2010,
110, 1960; (b) S. Banerjee, R. K. Das and U. Maitra, J. Mater.
Chem., 2009, 19, 6649; (c) M. Suzuki and K. Hanabusa, Chem. Soc.
Rev., 2010, 39, 455.
4 (a) A. W. Hains, Z. Liang, M. A. Woodhouse and B. A. Gregg,
Chem. Rev., 2010, 110, 6689; (b) J.-L. Bredas, J. E. Norton,
J. Cornil and V. Coropceanu, Acc. Chem. Res., 2009, 42, 1691;
(c) A. Wicklein, S. Ghosh, M. Sommer, F. Wurthner and
M. Thelakkat, ACS Nano, 2009, 3, 1107.
5 For general references on self-sorting, see: (a) H. Northrop,
Y.-R. Zheng, Ki-Whan Chi and P. J. Stang, Acc. Chem. Res.,
2009, 42, 1554; (b) A. Pal, S. Karthikeyan and R. P. Sijbesma,
J. Am. Chem. Soc., 2010, 132, 7842; (c) P. Mukhopadhyay,
P. Y. Zavalij and L. Isaacs, J. Am. Chem. Soc., 2006, 128, 14093;
(d) A. Heeres, C. v. d. Pol, M. Stuart, A. Friggeri, B. L. Feringa
and J. v. Esch, J. Am. Chem. Soc., 2003, 125, 14252;
(e) J. R. Moffat and D. K. Smith, Chem. Commun., 2009, 316;
(f) Y. Rudzevich, V. Rudzevich, F. Klautzsch, C. A. Schalley and
Having demonstrated self-sorting for the (NDI-1 + DAN-1)
pair we tested gelation of NDI-1 with various bis-amide
functionalized DAN-derivatives (Fig. S7w) with varying
distance between the two amide groups, and for all tested
D–A pairs, yellowish gels were observed in MCH (Fig. S7w)
without appearance of any red color, clearly suggesting
versatility of the current approach which was the major
drawback of our previous design.8,9 We further examined
the validity of this design in various structurally different
non-polar solvents (aromatic, chlorinated and hydrocarbon),
and in every occasion self-sorting was observed as indicated by
formation of a yellow gel (Fig. S8w).
V. Bc¸ hmer, Angew. Chem., Int. Ed., 2009, 48, 3867.
6 For CT-interaction mediated various supramolecular assemblies,
see: (a) R. S. Lokey and B. L. Iverson, Nature, 1995, 375, 303;
(b) S. A. Vignon, T. Jarrosson, T. Iijima, H.-R. Tseng, J. K.
M. Sanders and J. F. Stoddart, J. Am. Chem. Soc., 2004, 126, 9884;
(c) S. Ghosh and S. Ramakrishnan, Angew. Chem., Int. Ed., 2005,
44, 5441; (d) H. Y. Au-Yeung, G. D. Pantos and J. K. M. Sanders,
J. Am. Chem. Soc., 2008, 130, 12872; (e) R. K. Das, S. Banerjee,
G. Raffy, A. D. Guerzo, J.-P. Desvergne and U. Maitra, J. Mater.
Chem., 2010, 20, 7227; (f) N. S. S. Kumar, M. D. Gujrati and
J. N. Wilson, Chem. Commun., 2010, 46, 5464; (g) K. V. Rao,
K. Jayaramulu, T. K. Maji and S. J. George, Angew. Chem., Int.
Ed., 2010, 49, 4218; (h) K. Liu, C. Wang, Z. Li and X. Zhan,
Angew. Chem., Int. Ed., 2011, 50, 4952.
In summary, we have illustrated a versatile molecular design
for H-bonding mediated orthogonal-assembly between aromatic
donor and acceptor chromophores. The molecular design relies
on placing two self-complementary H-bonding functionalities
(amide) symmetrically in the donor building block while
unsymmetrically in the acceptor one, so that for alternate
co-stacking, not all the amides can participate in H-bonding.
As H-bonding is stronger than CT-interaction, self-sorting
was observed for all the tested donor–acceptor pairs with
related structures. To best of our knowledge this is the most
effective design for self-sorting because, in principle, it is
applicable universally to any donor–acceptor pair without
compromising the stability of individual assembly.
7 For orthogonal self-assembly of donor and acceptor chromophores,
see: (a) T. L. Benanti, P. Saejueng and D. Venkataraman, Chem.
Commun., 2007, 692; (b) K. Sugiyasu, S.-i. Kawano, N. Fujita and
S. Shinkai, Chem. Mater., 2008, 20, 2863; (c) J. van Herrikhuyzen,
A. Syamakumari, A. P. H. J. Schenning and E. W. Meijer, J. Am.
Chem. Soc., 2004, 126, 10021.
8 M. R. Molla, A. Das and S. Ghosh, Chem.–Eur. J., 2010,
16, 10084.
9 A. Das, M. R. Molla, A. Banerjee, A. Paul and S. Ghosh,
Chem.–Eur. J., 2011, 17, 6061.
10 The CGC value of NDI-1 (1.23 mM) is comparable with that of
NDI-2 (0.91 mM) suggesting that unsymmetrical placement of the
amide functionalities does not affect the gelation efficiency.
11 H. Shao, T. Nguyen, N. C. Romano, D. A. Modarelli and
J. R. Parquette, J. Am. Chem. Soc., 2009, 131, 16374.
12 A. Das and S. Ghosh, Chem.–Eur. J., 2010, 16, 13622.
13 Enhanced emission in the aggregated state (Fig. S2w) also supports
absence of face-to-face p-stacking which is generally associated
with fluorescence quenching.
We thank DST, India, for financial support (Project
No: SR/FT/CS-039/2008) and Mr M. R. Molla for NDI-2
sample. A. D. thanks CSIR for a research fellowship.
14 C. A. Hunter and J. K. M. Sanders, J. Am. Chem. Soc., 1990,
112, 5525.
15 J. J. Reczek, K. R. Villazor, V. Lynch, T. M. Swager and
B. L. Iverson, J. Am. Chem. Soc., 2006, 128, 7995.
Notes and references
1 For recent reviews, see: (a) D. G-Rodrı
´
guez and A. P. H. J.
Schenning, Chem. Mater., 2011, 23, 310; (b) A. Mishra, C.-Q. Ma
and P. Bauerle, Chem. Rev., 2009, 109, 1141; (c) Z. Chen, A. Lohr,
16 P. M. Alvey, J. J. Reczek, V. Lynch and B. L. Iverson, J. Org.
Chem., 2010, 75, 7682.
17 M. S. Cubberley and B. L. Iverson, J. Am. Chem. Soc., 2001,
123, 7560.
18 M. R. Molla and S. Ghosh, Chem. Mater., 2011, 23, 95.
C. R. Saha-Moller and F. Wurthner, Chem. Soc. Rev., 2009, 38,
¨
564.
¨
c
8924 Chem. Commun., 2011, 47, 8922–8924
This journal is The Royal Society of Chemistry 2011