Scheme 1
1,3,5-triazine allows for the formation of intramolecular
hydrogen bonds between the nitrogen of the central tri-
azine and the hydroxy group of the attached aryl groups.8
These hydroxy groups allow for conjugation between the
triazine ring and the pendant aryl groups, while also
providing a handle for fine-tuning the degree of planarity
in the system, a variable that is known to have a strong
effect on the physical and electronic properties of
molecules,9 oligomers and polymers.10 Although planar,
aryl-substituted triazine systems are known and utilized
frequently as structural units in coordination cages,11 the
highly functionalized, symmetrical structures as proposed
in Figure 1 have yet to be synthesized. We present herein
the synthesis and the physical and electronic properties of
symmetrical, crowded, planar triazines bearing unique
hydrogen bonded networks.
There are a number of established methods to form aryl-
substituted 1,3,5-triazines. Suzuki cross-coupling and ni-
trile trimerization have both been used to form triaryl
triazines.11ꢀ13 The sterically hindered triazine derivatives
of the type in Figure 1, where R ¼ H, are almost non-
existent in the literature, and these aforementioned meth-
ods were ineffective at forming the desired triazines.14
A
variety of organometallic reagents have also been used in
the literature to produce symmetrical and unsymmetrical
triazines,15 although for our targets, the use of Grignard
and organolithium reagents resulted only in the produc-
tion of mono- and diaryl-substituted triazines.16
The FriedelꢀCrafts arylation reaction is the method of
choice for appending bulky aryl substituents to the triazine
core, Scheme 1.14 Readily available starting materials can
be used to obtain the desired products, column chromato-
graphy is not necessary for purification, and high yields are
generally obtained.17,18
As shown in Scheme 1, O-methylated 5 was initially
targeted to provide a derivative that is not capable of
forming intramolecular hydrogen bonds with the triazine
nitrogens. Molecule 5 can be formed in one step from
compound 1 in 70% yield through reaction with AlCl3 and
(8) (a) Stueber, G. J.; Kieninger, M.; Schettler, H.; Busch, W.;
Goeller, B.; Franke, J.; Kramer, H. E. A.; Hoier, H.; Henkel, S.; Fischer,
P.; Port, H.; Hirsch, T.; Rytz, G.; Birbaum, J.-L. J. Phys. Chem. 1995, 99,
10097–10109. (b) Keck, J.; Roessler, M.; Schroeder, C.; Stueber, G. J.;
ꢀ
Waiblinger, F.; Stein, M.; LeGourrierec, D.; Kramer, H. E. A.; Hoier,
H.; Henkel, S.; Fischer, P.; Port, H.; Hirsch, T.; Rytz, G.; Hayoz, P. J.
Phys. Chem. B 1998, 102, 6975–6985. (c) Elbe, F.; Keck, J.; Fluegge,
A. P.; Kramer, H. E. A.; Fischer, P.; Hayoz, P.; Leppard, D.; Rytz, G.;
Kaim, W.; Ketterle, M. J. Phys. Chem. A 2000, 104, 8296–8306.
(9) (a) Fogel, Y.; Kastler, M.; Wang, Z.; Andrienko, D.; Bodwell,
€
G. J.; Mullen, K. J. Am. Chem. Soc. 2007, 129, 11743–11749. For recent
(13) (a) Hayami, S.; Inoue, K. Chem. Lett. 1999, 7, 545–546. (b) Ren,
S.; Zeng, D.; Zhong, H.; Wang, Y.; Qian, S.; Fang, Q. J. Phys. Chem. B
2010, 114, 10374–10383.
(14) Bosch, E.; Barnes, C. L. Inorg. Chem. 2002, 41, 2543–2547.
(15) Peng, Z.; Haag, B. A.; Knochel, P. Org. Lett. 2010, 12,
5398–5401.
(16) Lahti, P. M.; Liao, Y.; Julier, M.; Palacio, F. Synth. Met. 2001,
122, 485–493.
(17) (a) Davoust, M.; Kitching, J. A.; Fleming, M. J.; Lautens, M.
Chem.;Eur. J. 2010, 16, 50–54. (b) Ciana, C.-L.; Phipps, R. J.; Brandt,
J. R.; Meyer, F.-M.; Gaunt, M. J. Angew. Chem., Int. Ed. 2011, 50,
458–462.
work on curved aromatics, see: Steinberg, B. D.; Jackson, E. A.; Filatov,
A. S.; Wakamiya, A.; Petrukhina, M. A.; Scott, L. T. J. Am. Chem. Soc.
2009, 131, 10537–10545. Zhang, B.; Manning, G. P.; Dobrowolski,
M. A.; Cyranski, M. K.; Bodwell, G. J. Org. Lett. 2008, 10, 273–276.
(10) (a) Castelaın, M.; Salavagione, H. J.; Gomez, R.; Segura, J. L.
Chem. Commun. 2011, 47, 7677–7679. (b) Banerjee, M.; Shukla, R.;
Rathore, R. J. Am. Chem. Soc. 2009, 131, 1780–1786. (c) Wijsboom,
Y. H.; Patra, A.; Zade, S. S.; Sheynin, Y.; Li, M.; Shimon, L. J. W.;
Bendikov, M. Angew. Chem., Int. Ed. 2009, 48, 5443–5447.
(11) Osuga, T.; Murase, T.; Ono, K.; Yamauchi, Y.; Fujita, M. J.
Am. Chem. Soc. 2010, 132, 15553–15555.
ꢀ
ꢀ
´
ꢀ
(12) (a) Achelle, S.; Ramondenc, Y.; Marsais, F.; Ple, N. Eur. J. Org.
Chem. 2008, 3129–3140. (b) Chen, A. C.-A.; Wallace, J. U.; Wei,
S. K.-H.; Zeng, L.; Chen, S. H. Chem. Mater. 2006, 18, 204–213. (c)
Su, S.-J.; Sasabe, H.; Pu, Y.-J.; Nakayama, K.-i.; Kido, J. Adv. Mater.
2010, 22, 3311–3316.
(18) (a) Scholl, R.; Mansfeld, J. Ber. Dtsch. Chem. Ges. 1910, 43,
1734–1746. (b) King, B. T.; Kroulik, J.; Robertson, C. R.; Rempala, P.;
Hilton, C. L.; Korinek, J. D.; Gortari, L. M. J. Org. Chem. 2007, 72,
2279–2288.
Org. Lett., Vol. 13, No. 19, 2011
5081