Scheme 1. Retrosynthetic Analysis of Mycobacterial N-Glyco-
lyl Lipid II-like Molecule (1)
Figure 1. Mycobacterial Lipid II as the substrate in transglyco-
sylation for mycobacterial peptidoglycan formation.
The transpeptidase responsible for the cross-linking
of peptidoglycans is a target for existing antibiotics.4,5
Although the transglycosylase (TGase) is also a poten-
tial target, no antibiotics have yet been developed.6,7
Mycobacterial TGase catalyzes the polymerization of
Lipid II to form peptidoglycan (Figure 1).8,9 During
transglycosylation, the sugar moiety from the activated
polymeric peptidoglycan (a glycosyl donor) is linked
to the specific hydroxyl group (4-OH) of Lipid II
(a glycosyl acceptor) with associated release of a decapre-
nyl pyrophosphate (Figure 1). Since TGase is located on
the external surface of bacterial membranes, it allows easy
access to inhibitors and, because of the lack of a eukaryotic
counterpart, thus eliminates the risk of serious side effects.
As such, it is thought an attractive target for antibiotic
discovery and development.8 Unfortunately, the study of
mycobacterial transglycosylation for drug discovery has
been hampered by the difficulty in acquiring N-glycolyl
Lipid II from natural sources.10
mycobacterial cell walls, and considered a potential bio-
marker. The N-glycolyl groups in peptidoglycan chains
may play an impotant role in the resistance to lysozyme
and in the innate immune response during a mycobacterial
infection.12
Currently, only Mtb Park’s nucleotide, a peptidoglycan
precursor, has been synthesized by Kurosu and co-
workers.13 To the best of our knowledge, chemical synth-
eses of N-glycolyl Lipid II and its analogues have not been
explored. Herein, we describe the first synthesis of a N-
glycolyl Lipid II-like molecule, GlcNAcMurNglyc-(L-Ala-
D-Glu-L-Lys-D-Ala-D-Ala)-undecaprenyl phosphate (1).
The decaprenyl phosphate and meso-diaminopimelic acid
(meso-DAP) moieties in the original Mtb N-glycolyl Lipid
Structually, Mtb N-glycolyl Lipid II comprises the dis-
accharide of N-acetylglucosamine (GlcNAc) and N-glyco-
lylmuramic acid (MurNGlyc), pyrophosphate, decaprenol
lipid tail, and the pentapeptide moiety (L-Ala-D-Glu-meso-
DAP-D-Ala-D-Ala (Figure 1).9À11 Notably, the N-glycolyl
muramic acid is a special component and only observed in
(12) (a) Raymond, J. B.; Mahapatra, S.; Crick, D. C.; Pavelka, M. S.
J. Biol. Chem. 2005, 280, 326–333. (b) Daryaee, F.; Kobarfard, F.;
Khalaj, A.; Farnia, P. Eur. J. Med. Chem. 2009, 44, 289–295.
(13) Li, K.; Kurosu, M. Heterocycles. 2008, 76, 455–469.
(14) (a) Khidyrova, N. K.; Shakhidoyatov, K. M. Chem. Nat.
Compd. 2002, 38, 107–121. (b) Ruiz-Rodriguez, A.; Bronze, M.-R.;
Ponte, M. N. d. J. Supercrit. Fluids 2008, 45, 171–176.
(5) (a) Chambers, H.; Moreau, D.; Yajko, D.; Miick, C.; Wagner, C.;
Hackbarth, C.; Kocagoz, S.; Rosenberg, E.; Hadley, W.; Nikaido, H.
Antimicrob. Agents Chemother. 1995, 39, 2620–2624. (b) Anishetty, S.;
Pulimi, M.; Pennathur, G. Comput. Biol. Chem. 2005, 29, 368–378.
(6) Barry, C. E.; Crick, D. C.; McNeil, M. R. Infect. Disord.: Drug
Targets 2007, 7, 182–202.
(7) Vollmer, W.; Holtje, J.-V. Antimicrob. Agents Chemother. 2000,
44, 1181–1185.
(15) Schwartz, B.; Markwalder, J. A.; Wang, Y. J. Am. Chem. Soc.
2001, 123, 11638–11643.
(8) (a) Ye, X.-Y.; Lo, M.-C.; Brunner, L.; Walker, D.; Kahne, D.;
Walker, S. J. Am. Chem. Soc. 2001, 123, 3155–3156. (b) Halliday, J.;
McKeveney, D.; Muldoon, C.; Rajaratnam, P.; Meutermans, W. Bio-
chem. Pharmacol. 2006, 71, 957–967.
(9) Crick, D. C.; Mahapatra, S.; Brennan, P. J. Glycobiology. 2001,
11, 107R–118R.
(16) (a) Liu, C.-Y.; Guo, C.-W.; Chang, Y.-F.; Wang, J.-T.; Shih, H.-
W.; Hsu, Y.-F.; Chen, C.-W.; Chen, S.-K.; Wang, Y.-C.; Cheng, T.-J.
R.; Ma, C.; Wong, C.-H.; Fang, J.-M.; Cheng, W.-C. Org. Lett. 2010, 12,
1608–1611. (b) Stachyra, T.; Dini, C.; Ferrari, P.; Bouhss, A.; van
Heijenoort, J.; Mengin-Lecreulx, D.; Blanot, D.; Biton, J.; Le Beller,
D. Antimicrob. Agents Chemother. 2004, 48, 897–902.
(10) Mahapatra, S.; Yagi, T.; Belisle, J. T.; Espinosa, B. J.; Hill, P. J.;
McNeil, M. R.; Brennan, P. J.; Crick, D. C. J. Bacteriol. 2005, 187, 2747–
2757.
(17) VanNieuwenhze, M. S.; Mauldin, S. C.; Zia-Ebrahimi, M.;
Winger, B. E.; Hornback, W. J.; Saha, S. L.; Aikins, J. A.; Blaszczak,
L. C. J. Am. Chem. Soc. 2002, 124, 3656–3660.
(11) (a) Kaur, D.; Brennan, P. J.; Crick, D. C. J. Bacteriol. 2004, 186,
7564–7570. (b) Vollmer, W. FEMS Microbiol. Rev. 2008, 32, 287–306.
(18) Benakli, K.; Zha, C.; Kerns, R. J. J. Am. Chem. Soc. 2001, 123,
9461–9462.
Org. Lett., Vol. 13, No. 19, 2011
5307