Notes and references
z Crystal data for 2: 4C36H55N3O4ꢁ4C3H8O, M = 2615.70, triclinic,
space group P1, a = 12.9772(3), b = 14.3714(2), c = 22.6800(6) A,
a = 73.075(1), b = 79.981(1), g = 69.560(1)1, V = 3779.5(1) A3, Z = 1,
MoKa radiation (l = 0.71073 A), T = 123.0(1) K, m = 0.075 mmꢀ1
.
Brucker-Nonius Kappa-APEXII diffractometer, 27 543 reflections,
13227 independent (Rint = 0.0401), and 10668 observed reflections
[I Z 2s(I)], 1726 refined parameters, R = 0.06, wR2 = 0.13.
Fig. 4 (a) Organogels of 1, 2 and 3 formed in various organic
solvents; (b) and (c) nano-architectures formed by xerogels of 2 and
3, respectively. Scale bar represents 100 nm.
1 (a) S. J. Kang, I. Bae, Y. J. Park, T. H. Park, J. Sung, S. C. Yoon,
K. H. Kim, D. H. Choi and C. Park, Adv. Funct. Mater.,
2009, 19, 1609; (b) R. C. G. Naber, K. Asadi, P. W. M. Blom,
D. M. De Leeuw and B. de Boer, Adv. Mater., 2009, 21, 1;
(c) R. Schroeder, L. A. Majewski and M. Grell, Adv. Mater.,
2004, 16, 633; (d) F. Kagawa, S. Horiuchi, M. Tokunaga,
J. Fujioka and Y. Tokura, Nat. Phys., 2010, 6, 169;
(e) G. Rogez, N. Viart and M. Drillon, Angew. Chem., Int. Ed.,
2010, 49, 1921.
Dielectric measurements of 1, gave a value of 7.4 at RT,
which is 85% and 64% higher than DNPH and TCAA,
respectively. These measurements further revealed a sharp
transition at 105 1C, due to the crystalline to cholesteric phase
transition of the cholesteryl moiety (SI 9w).
It is worthwhile to consider that P–E loops can have some
contribution from the leakage current.12a However, large values of
Ps implies that leakage current, even if present, can be neglected as
in the case with improper ferroelectricity in spin frustrated
systems.12b We therefore measured the magnitude of leakage
current and ascertained that the origin of the ferroelectricity in
this material is due to the spontaneous polarization switching and
is not due to the leakage of charges arising from the conduction.
The leakage current measurement at RT of 1–3 show current
densities of 1.06–1.83 ꢂ 10ꢀ6 A cmꢀ2 for an applied field of
10 kV cmꢀ1 (SI 10w). These leakage current density values are
comparable or lower than for known FE materials.12c
2 (a) S. E. Park, S. Wada, L. E. Cross and T. Shrout, J. Appl. Phys.,
1999, 86, 2746; (b) E. Sawaguchi, J. Phys. Soc. Jpn., 1953,
8, 615.
3 For single-component organic ferroelectric solids, see: (a) J. Valasek,
Phys. Rev., 1921, 17, 475; (b) S. Horiuchi, Y. Tokunaga,
G. Giovannetti, S. Picozzi, H. Itoh, R. Shimano, R. Kumai and
Y. Tokura, Nature, 2010, 463, 789; (c) Y. Sui, D.-S. Liu, R.-H. Hu
and H.-M. Chen, J. Mater. Chem., 2011, DOI: 10.1039/c0jm03461d;
(d) J. Sapriel, A. Boudou and A. Perigaud, Phys. Rev. B, 1979,
19, 1484; (e) P. Szklarz and G. Bator, J. Phys. Chem. Solids, 2005,
66, 121; (f) P.-B. Gruner and E. Dormann, J. Phys.: Condens. Matter,
1992, 4, 5599; (g) Y. Kamishima, Y. Akishige and M. Hashimoto,
J. Phys. Soc. Jpn., 1991, 60, 2147.
4 For two-component organic ferroelectric solids, see: (a) S. Horiuchi
and Y. Tokura, Nat. Mater., 2008, 7, 357; (b) S. Horiuchi, R. Kumai
and Y. Tokura, Chem. Commun., 2007, 2321.
Furthermore, successful assimilation of FE properties in the
nano-domain would result in a wide range of innovative
materials.13 Although there has been much research toward
inorganic FE nano-materials, to the best of our knowledge,
there are as yet no reports for the organic counterparts. To
realize ferroelectricity in the nano-architectures the self-assembly
properties of 1–3 were studied in a range of organic solvents.
Compounds 1–3 formed thermo-reversible supramolecular
networks in a broad range of common organic solvents
(Fig. 4a, Table 4w).
5 For organic–inorganic hybrid ferroelectric solids: (a) T. Okubo,
R. Kawajiri, T. Mitani and T. Shimoda, J. Am. Chem. Soc., 2005,
127, 17598; (b) Q. Ye, Y.-M. Song, G.-Xi. Wang, K. Chen, D.-W. Fu,
P. W. H. Chan, J.-s. Zhu, S. D. Huang and R.-G. Xiong, J. Am.
Chem. Soc., 2006, 128, 6554; (c) W.-W. Zhou, J.-T. Chen, G. Xu,
M.-S. Wang, J.-P. Zou, X.-F. Long, G.-J. Wang, G.-C. Guo and
J.-S. Huang, Chem. Commun., 2008, 2762; (d) W. Zhang, R.-G. Xiong
and S. D. Huang, J. Am. Chem. Soc., 2008, 130, 10468.
6 For organic-based semiconductors, FE LCs, NLO materials, gels
and receptors, see: (a) D. Braga and G. Horowitz, Adv. Mater.,
2009, 21, 1473; (b) H. E. Katz, A. J. Lovinger, C. Kloc, T. Siegrist,
W. Li, Y.-Y. Lin and A. Dodabalapur, Nature, 2000, 404, 478;
(c) S. T. Lagerwall, Ferroelectric and Antiferroelectric Liquid
Crystals, Wiley-VCH, Weinheim, 1999; (d) W. Weissflog,
G. Pelzl, H. Kresse, U. Baumeister, K. Brand, M. W. Schroder,
M. G. Tamba, S. Findeisen-Tandel, U. Kornek, S. Stern,
A. Eremin, R. Stannarius and J. Svoboda, J. Mater. Chem.,
2010, 20, 6057; (e) B. J. Coe, Chem.–Eur. J., 1999, 5, 2464;
(f) S. Banerjee, R. K. Das and U. Maitra, J. Mater. Chem.,
2009, 19, 6649; (g) D. K. Smith, Chem. Soc. Rev., 2009, 38, 684;
(h) N. Fujita, P. Mukhopadhyay and S. Shinkai, Annu. Rev. Nano
Res., 2006, 1, 385; (i) P. Mal, B. Breiner, K. Rissanen and
J. R. Nitschke, Science, 2009, 324, 1697.
SEM images (Fig. 4) revealed well-defined nano-architectures
such as nanorods, porous sheets, etc. in the xerogels (SI 11w).
As a representative example, we examined the FE properties of
the nano-architectures formed by 3, which clearly exhibits a
P–E hysteresis loop at room temperature having Ps, Pr and Ec
values of 0.498 mC cmꢀ2, 0.234 mC cmꢀ2 and 3.95 kV cmꢀ1
,
respectively at 1.25 kV (SI 8w). This new approach therefore
readily allows us to integrate FE property for the first time in
all-organic nano-architectures.
7 J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspectives,
Wiley-VCH, Weinheim, 1995.
8 P. Mukhopadhyay, P. K. Bharadwaj, G. Savitha, A. Krishnan and
P. K. Das, Chem. Commun., 2000, 1815.
To conclude, we have demonstrated the first applications of
a modular design approach combined with supramolecular
self-assembly to realize ferroelectricity in AOSC solids and for
the first time in all-organic nano-architectures constituted
from stable organogels. This approach has led to B1 cm long
FE crystals as well as nano-materials with the same molecule.
We therefore believe that this new and general strategy should
lead to many more innovative all-organic FE materials.
We thank DST for financial support and the Academy of
Finland (KR: proj. no. 212588 and 218325). We thank Prof.
P. K. Das and Mr Ravindra Pandey, IISC Bangalore, India
for the SHG measurements and AIRF, JNU, New Delhi,
India for the 500 MHz NMR, IR and CD facilities
9 Example of a steroid-thiophene based module: S.-i. Kawano,
N. Fujita and S. Shinkai, Chem.–Eur. J., 2005, 11, 4735.
10 S. K. Kurtz and T. T. Perry, J. Appl. Phys., 1968, 39, 3798.
11 K. Noda, K. Ishida, A. Kubono, T. Horiuchi, H. Yamada and
K. Matsushige, J. Appl. Phys., 2003, 93, 2866.
12 (a) R. Meyer and R. Waser, Appl. Phys. Lett., 2005, 86, 142907;
(b) A. K. Singh, S. D. Kaushik, Brijesh Kumar, P. K. Mishra,
A. Venimadhav, V. Siruguri and S. Patnaik, Appl. Phys. Lett.,
2008, 92, 132910; (c) S. Fujisaki, H. Ishiwara and Y. Fujisaki,
Appl. Phys. Lett., 2007, 90, 162902.
13 S. Mornet, C. Elissalde, O. Bidault, F. Weill, E. Sellier, O. Nguyen
and M. Maglione, Chem. Mater., 2007, 19, 987.
c
8930 Chem. Commun., 2011, 47, 8928–8930
This journal is The Royal Society of Chemistry 2011