Y. Saito et al. / Tetrahedron Letters 52 (2011) 4726–4729
4729
strong deazapurine (ZA)–C interaction.13 As shown in Table 1, the
References and notes
melting temperatures of ODN 1(CNZA)/ODN 2(T) and ODN
1(CNZA)/ODN 2(C) were considerably higher than those observed
in other mismatched duplexes in a sodium phosphate buffer (pH
7.0), suggesting that CNZA can also form a stable base pair with both
natural T and C, although incorporation of bulky CNZA into duplexes
1. (a) Greco, N. J.; Sinkeldam, R. W.; Tor, Y. Org. Lett. 2009, 11, 1115; (b) Srivatsan,
S. G.; Tor, Y. J. Am. Chem. Soc. 2007, 129, 2044; (c) Printz, M.; Richert, C.
Chemistry 2009, 15, 3390; (d) Cekan, P.; Sigurdsson, S. T. Chem. Commun. 2008,
3393.
2. (a) Saito, Y.; Miyauchi, Y.; Okamoto, A.; Saito, I. Tetrahedron Lett. 2004, 45, 7827;
(b) Matsumoto, K.; Takahashi, N.; Suzuki, A.; Morii, T.; Saito, Y.; Saito, I. Bioorg.
Med. Chem. Lett. 2011, 21, 1275.
3. Tainaka, K.; Tanaka, K.; Ikeda, S.; Nishiza, K.; Unzai, T.; Fujiwara, Y.; Saito, I.;
Okamoto, A. J. Am. Chem. Soc. 2007, 129, 4776.
4. Saito, Y.; Suzuki, A.; Imai, K.; Nemoto, N.; Saito, I. Tetrahedron Lett. 2010, 51,
2606.
5. Seela, F.; Shaikh, K. I. Tetrahedron 2005, 61, 2675.
6. Baik, M.-H.; Silverman, J. S.; Yang, I. V.; Ropp, P. A.; Szalai, V. A.; Yang, W.;
Thorp, H. H. J. Phys. Chem. B 2001, 105, 6437.
7. Grimshaw, J.; Trocha-Grimshaw, J. J. Chem. Soc., Perkin Trans. 1 1972, 1622.
8. Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467.
9. Seela, F.; Zulauf, M. Synthesis 1996, 726.
resulted in
Tm = 7.1 °C) as compared with unmodified matched ODN 1(A)/
ODN 2(T).
a
considerable destabilization of the duplex
(D
Next, we measured the fluorescence spectra of ODN 1 in the
presence or absence of complementary strands. Strong fluores-
cence emissions of single-stranded ODN 1 and the duplexes with
complementary strands ODN 2 (T, C, A, G) were observed at around
485 nm. However, the fluorescence wavelength and intensity were
not changed remarkably by changing the nucleosides opposite to
CNZA (Table 1, Fig. S1), indicating that CNZA cannot be used as a
base-discriminating fluorescent nucleoside.14
10. Spectroscopic data for CNZA (1): 1H NMR (DMSO-d6, 400 MHz) d 2.31 (ddd,
J = 2.9, 6.0, 13.2 Hz, 1H), 2.57 (m, 1H), 3.60–3.71 (complex, 2H), 3.91 (m, 1H),
4.44 (m, 1H), 4.97 (dd, J = 5.5, 5.5 Hz, 1H), 5.20 (d, J = 4.2 Hz, 1H), 6.60 (m, 1H),
6.77 (br, 2H), 7.96–8.01 (complex, 4H), 8.11 (s, 1H), 8.28 (s, 1H), 8.36–8.45
(complex, 6H), 8.69 (d, J = 9.0 Hz, 1H), 8.70 (d, J = 9.0 Hz, 1H); 13C NMR (DMSO-
d6, 100 MHz) d 61.7, 70.7, 78.9(ꢀ2), 83.2, 87.5, 89.5, 89.6, 91.9, 93.9, 110.9,
116.4, 118.1, 118.2, 123.1, 123.2, 125.3, 125.4, 125.7, 125.9, 127.0, 127.3, 128.3,
128.7, 129.8, 130.2, 130.3, 130.7, 131.2, 131.4, 132.1(ꢀ2), 132.4(ꢀ2), 149.5,
152.6, 157.5. C(20) overlapped with DMSO; HRMS (ESI) m/z 622.1855 calcd for
In summary, we have synthesized novel push–pull-type fluo-
rescent 7-deazapurine nucleosides CNZA and CNZG, the first highly
fluorescent pyrene containing 7-deaza-20-deoxypurine nucleo-
sides. CNZA exhibited strong fluorescence at long wavelength and
a remarkable solvatofluorochromicity (D
kfl.max = 60 nm). CNZA was
C
38H25N5O3Na [M+Na]+, found 622.1858.
incorporated into oligonucleotides and the thermal stability of
the resulting duplex was evaluated. The thermal melting data indi-
cated that CNZA can form a stable base pair with natural T and C,
similar to that reported for 7-deaza-20-deoxyadenosine (ZA). Such
types of environmentally sensitive and strongly fluorescent
nucleosides may be used as a fluorescence sensor for structural
studies of nucleic acids and as a building block for constructing a
fluorescent DNA nanostructure.
Spectroscopic data for CNZG (2): 1H NMR (DMSO-d6, 400 MHz) d 2.21 (ddd,
J = 2.8, 5.9, 13.1 Hz, 1H), 2.45 (ddd, J = 5.9, 8.1, 13.1 Hz, 1H), 3.57–3.65
(complex, 2H), 3.85 (m, 1H), 4.38 (m, 1H), 4.86 (m, 1H), 5.16 (d, J = 2.9 Hz,
1H), 6.37–6.40 (complex, 3H), 7.56 (s, 1H), 7.96–8.01 (complex, 4H), 8.22 (d,
J = 8.0 Hz, 1H), 8.32–8.41 (complex, 5H), 8.66 (d, J = 9.1 Hz, 1H), 9.07 (d,
J = 9.1 Hz, 1H), 10.40 (br, 1H); 13C NMR (DMSO-d6, 100 MHz) d 61.8, 70.7, 82.4,
87.2, 88.7, 91.2, 92.1, 93.8, 98.4, 99.6, 110.9, 116.0, 118.2, 119.4, 122.1, 123.2,
123.2, 124.9, 125.1, 125.7, 127.0, 127.1, 127.8, 128.8, 128.9, 129.8, 130.1, 131.0,
131.4, 131.5, 132.1(ꢀ2), 132.4(ꢀ2), 150.5, 153.3, 158.8. C(20) overlapped with
DMSO; HRMS (ESI) m/z 638.1804 calcd for C38H25N5O4Na [M+Na]+, found
638.1818.
11. Ramzaeva, N.; Seela, F. Helv. Chim. Acta 1995, 78, 1083.
12. Quantum yields (U) were calculated according to the following reference:
Acknowledgment
Morris, J. V.; Mahaney, M. A.; Huber, J. R. J. Phys. Chem. 1976, 80, 969.
13. Peng, X.; Li, H.; Seela, F. Nucleic Acids Res. 2006, 34, 5987.
14. (a) Okamoto, A.; Kanatani, K.; Saito, I. J. Am. Chem. Soc. 2004, 126, 4820; (b)
Saito, Y.; Miyauchi, Y.; Okamoto, A.; Saito, I. Chem. Commun. 2004, 1704.
This work was supported by a Grant-in-Aid for Scientific re-
search of MEXT, from Japanese Government.
Supplementary data
Supplementary data associated with this article can be found, in