Journal of the American Chemical Society
COMMUNICATION
’ AUTHOR INFORMATION
(10) For the systematic positional numbering system used through-
out this report, see page S3 in the SI.
(11) (a)Forelectrophilic activation of a C3-selenocyclotryptamine, see:
Depew, K. M.; Marsden, S. P.; Zatorska, D.; Zatorski, A.; Bornmann, W. G.;
Danishefsky, S. J. J. Am. Chem. Soc. 1999, 121, 11953. (b) Iwaki, T.; Yamada,
F.; Funaki, S.; Somei, M. Heterocycles 2005, 65, 1811.
Corresponding Author
’ ACKNOWLEDGMENT
(12) For addition to C3 of oxindoles, see: (a) Nicolaou, K. C.; Chen, D.
Y.-K.; Huang, X.; Ling, T.; Bella, M.; Snyder, S. A. J. Am. Chem. Soc. 2004,
126, 12888. (b) Fuchs, J. R.; Funk, R. L. Org. Lett. 2005, 7, 677. (c) Magnus,
P.; Turnbull, R. Org. Lett. 2006, 8, 3497. (d) Cheung, C.-M.; Goldberg,
F. W.; Magnus, P.; Russell, C. J.; Turnbull, R.; Lynch, V. J. Am. Chem. Soc.
2007, 129, 12320. (e) England, D. B.; Merey, G.; Padwa, A. Org. Lett. 2007,
9, 3805. (f) Grant, C. D.; Krische, M. J. Org. Lett. 2009, 11, 4485.
(13) (a) Molander, G. A.; Ellis, N. Acc. Chem. Res. 2007, 40, 275. (b)
Vedejs, E.; Chapman, R. W.; Fields, S. C.; Lin, S.; Schrimpf, M. R. J. Org.
Chem. 1995, 60, 3020.
(14) For a single-step synthesis from commercially available
Nα-Boc-L-Trp-OMe, see: Kiso, Y.; Inai, M.; Kitagawa, K.; Akita, T.
Chem. Lett. 1983, 5, 739.
(15) Petasis, N. A.; Akritopoulou, I. Tetrahedron Lett. 1993, 34, 583.
(16) For the use of potassium heteroaryl- and styrenyltrifluorobo-
rates in FriedelꢀCrafts alkylation reactions, see: Lee, S.; MacMillan,
D. W. C. J. Am. Chem. Soc. 2007, 129, 15438.
We acknowledge financial support by NIH-NIGMS (GM089732),
Amgen, and DuPont. M.M. is a Camille Dreyfus Teacherꢀ
Scholar. J.K. acknowledges a National Defense Science and
Engineering Graduate Fellowship. We thank Dr. Omar K.
Ahmad and Dr. Nicolas Boyer for helpful discussions and Prof.
R. J. Capon for a communication regarding the discrepancy
between our respective stereochemical assignments of 1 and 2.
’ REFERENCES
(1) (a) Hino, T.; Nakagawa, M. The Alkaloids: Chemistry and
Pharmacology; Brossi, A., Ed.; Academic Press: New York, 1989; Vol.
34, pp 1ꢀ75. (b) Anthoni, U.; Christophersen, C.; Nielsen, P. H.
Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.;
Pergamon: London, 1999; Vol. 13, pp 163ꢀ236.
(2) (a) Hendrickson, J. B.; Rees, R.; Goschke, R. Proc. Chem. Soc.
1962, 383. (b) Hino, T.; Yamada, S. Tetrahedron Lett. 1963, 4, 1757. (c)
Scott, A. I.; McCapra, F.; Hall, E. S. J. Am. Chem. Soc. 1964, 86, 302. (d)
Nakagawa, M.; Sugumi, H.; Kodato, S.; Hino, T. Tetrahedron Lett. 1981,
22, 5323. (e) Fang, C.-L.; Horne, S.; Taylor, N.; Rodrigo, R. J. Am. Chem.
Soc. 1994, 116, 9480. (f) Link, J. T.; Overman, L. E. J. Am. Chem. Soc.
1996, 118, 8166. (g) Overman, L. E.; Paone, D. V.; Stearns, B. A. J. Am.
Chem. Soc. 1999, 121, 7702. (h) Somei, M.; Osikiri, N.; Hasegawa, M.;
Yamada, F. Heterocycles 1999, 51, 1237. (i) Overman, L. E.; Larow, J. F.;
Stearns, B. A.; Vance, J. M. Angew. Chem., Int. Ed. 2000, 39, 213. (j)
Ishikawa, H.; Takayama, H.; Aimi, N. Tetrahedron Lett. 2002, 43, 5637.
(k) Matsuda, Y.; Kitajima, M.; Takayama, H. Heterocycles 2005, 65, 1031.
(3) (a) Movassaghi, M.; Schmidt, M. A. Angew. Chem., Int. Ed. 2007,
46, 3725. (b) Movassaghi, M.; Schmidt, M. A.; Ashenhurst, J. A. Angew.
Chem., Int. Ed. 2008, 47, 1485. (c) Kim, J.; Ashenhurst, J.; Movassaghi,
M. Science 2009, 324, 238. (d) Kim, J.; Movassaghi, M. J. Am. Chem. Soc.
2010, 132, 14376. (e) Movassaghi, M.; Ahmad, O. K.; Lathrop, S. P.
J. Am. Chem. Soc. 2011, 133, 13002.
(17) Transmetalation of the aryltrifluoroborate to silver appears to
be slower than C3 ionization. Addition of PhAg (2 equiv) to a solution
of (+)-11 in CH2Cl2 at 23 °C did not provide the desired product.
For silver transmetalation of arylboronic acids, see: Furuya, T.; Ritter, T.
Org. Lett. 2009, 11, 2860.
(18) For the addition of phenyltrifluoroborate (2 equiv) to (+)-11
(1 equiv) in nitromethane using AgSbF6 (2 equiv) as the ionization
promoter, a C3-hydroxylated product was observed (38% yield) along
with the desired adduct (38% yield). In contrast, inclusion of 18-crown-6
(2 equiv) resulted in formation of the desired product (78% yield).
(19) C3-hydroxylated products likely arise from hydrolysis of an
activated intermediate upon aqueous quench.
(20) The reaction of PhBF3K (2 equiv) with (+)-11 (1 equiv) and
AgSbF6 (2 equiv) in MeCN at 23 °C resulted in the C3-phenyl adduct
(59% yield) and a C3-acetamide adduct (41% yield).
(21) The reaction of PhBF3K (2 equiv) with (+)-11 (1 equiv) and
AgSbF6 (2 equiv) in DMF at 23 °C resulted in the C3-hydroxylated
product (22% yield) and a C3-formate adduct (72% yield).
(22) Mayr, H.; Bug, T.; Gotta, M. F.; Hering, N.; Irrgang, B.; Janker,
B.; Kempf, B.; Loos, R.; Ofial, A. R.; Remennikov, G.; Schimmel, H.
J. Am. Chem. Soc. 2001, 123, 9500.
(23) Schmidt, U.; Griesser, H.; Leitenberger, V.; Lieberknecht, A.;
Mangold, R.; Meyer, R.; Reidl, B. Synthesis 1992, 487.
(24) (a) Burk, M. J.; Allen, J. G.; Kiesman, W. F. J. Am. Chem. Soc.
1998, 120, 657. (b) Wang, W.; Xiong, C.; Yang, J.; Hruby, V. J.
Tetrahedron Lett. 2001, 42, 7717.
(25) (a) Billingsley, K. L.; Buchwald, S. L. J. Org. Chem. 2008,
73, 5589. (b) Billingsley, K. L.; Barder, T. E.; Buchwald, S. L. Angew.
Chem., Int. Ed. 2007, 46, 5359. (c) Ishiyama, T.; Murata, M.; Miyaura, N.
J. Org. Chem. 1995, 60, 7508.
(4) For recent applications of our cobalt-mediated dimerization of
ꢀ
indole derivatives, see: (a) Pꢀerez-Balado, C.; de Lera, A. R. Org. Lett.
ꢀ
2008, 10, 3701. (b) Pꢀerez-Balado, C.; Rodríguez-Gran~a, P.; de Lera, A.
R. Chem.—Eur. J. 2009, 15, 9928. (c) Iwasa, E.; Hamashima, Y.;
Fujishiro, S.; Higuchi, E.; Ito, A.; Yoshida, M.; Sodeoka, M. J. Am. Chem.
Soc. 2010, 132, 4078. (d) Foo, K.; Newhouse, T.; Mori, I.; Takayama, H.;
Baran, P. S. Angew. Chem., Int. Ed. 2011, 50, 2716.
(5) (a) Matsuda, Y.; Kitajima, M.; Takayama, H. Org. Lett. 2008,
10, 125. (b) Newhouse, T.; Baran, P. S. J. Am. Chem. Soc. 2008, 130, 10886.
(c) Espejo, V. R.; Rainier, J. D. J. Am. Chem. Soc. 2008, 130, 12894.
(d) Newhouse, T.; Lewis, C. A.; Baran, P. S. J. Am. Chem. Soc. 2009,
131, 6360. (e) Espejo, V. R.; Li, X.-B.; Rainier, J. D. J. Am. Chem. Soc. 2010,
132, 8282. (f) Espejo, V. R.; Rainier, J. D. Org. Lett. 2010, 12, 2154. (g) Pꢀerez-
ꢀ
Balado, C.; de Lera, A. R. Org. Biomol. Chem. 2010, 8, 5179.
(26) Kinzel, T.; Zhang, Y.; Buchwald, S. L. J. Am. Chem. Soc. 2010,
(6) For syntheses of C3-arylated cyclotryptamines, see: (a) Govek,
S. P.; Overman, L. E. J. Am. Chem. Soc. 2001, 123, 9468. (b) Kodanko,
J. J.; Overman, L. E. Angew. Chem, Int. Ed. 2003, 42, 2528. (c) Govek,
S. P.; Overman, L. E. Tetrahedron 2007, 63, 8499. (d) Kodanko, J. J.;
Hiebert, S.; Peterson, E. A.; Sung, L.; Overman, L. E.; De Moura Linck,
V.; Goerck, G. C.; Amador, T. A.; Leal, M. B.; Elisabetsky, E. J. Org.
Chem. 2007, 72, 7909. (e) Movassaghi, M.; Schmidt, M. A.; Ashenhurst,
J. A. Org. Lett. 2008, 10, 4009.
132, 14073.
(27) Varoglu, M.; Corbett, T.; Valeriote, F.; Crews, P. J. Org. Chem.
1997, 62, 7078.
(28) Ding, G.; Jiang, L.; Guo, L.; Chen, X.; Zhang, H.; Che, Y. J. Nat.
Prod. 2008, 71, 1861.
(29) Jannic, V.; Gueritte, F.; Laprevote, O.; Serani, L.; Martin, M.-T.;
Sevenet, T.; Potier, P. J. Nat. Prod. 1999, 62, 838.
(30) Ratnayake, R.; Fremlin, L. J.; Lacey, E.; Gill, J. H.; Capon, R. J.
J. Nat. Prod. 2008, 71, 403.
(31) Movassaghi, M.; Siegel, D. S.; Han, S. Chem. Sci. 2010, 1, 561.
(7) Raju, R.; Piggott, A. M.; Conte, M.; Aalbersberg, W. G. L.;
Feussner, K.; Capon, R. J. Org. Lett. 2009, 11, 3862.
(8) We consider a biosynthetic hypothesis in which dimerization
occurs at an advanced stage using well-elaborated tryptophan systems
(e.g., cyclodipeptides) to be plausible; see Scheme S1 in the SI.
(9) See the SI for details.
14943
dx.doi.org/10.1021/ja206743v |J. Am. Chem. Soc. 2011, 133, 14940–14943