Communication
ChemComm
Table 2 Comparison of TBTA- and Hm-TBTA-assisted CuAAc reactions
in the presence of the biological thiol glutathione (GSH)a
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 L. Jin, D. R. Tolentino, M. Melaimi and G. Bertrand, Sci. Adv., 2015,
1, e1500304.
2 R. Berg and B. F. Straub, Beilstein J. Org. Chem., 2013, 9,
2715–2750.
3 (a) C. S. McKay and M. G. Finn, J. Chem. Biol., 2014, 9, 1075–1101;
(b) J. Chen, J. Wang, K. Li, Y. Wang, M. Gruebele, A. L. Ferguson and
S. C. Zimmerman, J. Am. Chem. Soc., 2019, 141, 9693–9700.
4 H. Li, R. Aneja and I. Chaiken, Molecules, 2013, 18, 9797–9817.
5 J. E. M. Lewis, P. D. Beer, S. J. Loeb and S. M. Goldup, Chem. Soc.
Rev., 2017, 46, 2577–2591.
6 J. E. Hein and V. V. Fokin, Chem. Soc. Rev., 2010, 39, 1302–1315.
7 T. R. Chan, R. Hilgraf, K. B. Sharpless and V. V. Fokin, Org. Lett.,
2004, 6, 2853–2855.
8 K. E. Beatty, F. Xie, Q. Wang and D. A. Tirrell, J. Am. Chem. Soc., 2005,
127, 14150–14151.
9 Y.-Y. Guo, B. Zhang, L. Wang, S. Huang, S. Wang, Y. You, G. Zhu,
A. Zhu, M. Geng and L. Li, Chem. Commun., 2020, 56,
14401–14403.
10 (a) V. Hong, S. I. Presolski, C. Ma and M. G. Finn, Angew. Chem., Int.
Ed., 2009, 48, 9879–9883; (b) Z. Zhu, H. Chen, S. Li, X. Yang,
E. Bittner and C. Cai, Catal. Sci. Technol., 2017, 7, 2474–2485.
11 T. V. Tran, G. Couture and L. H. Do, Dalton Trans., 2019, 48,
9751–9758.
12 (a) M. Raynal, P. Ballester, A. Vidal-Ferran and P. W. N. M. van
Leeuwen, Chem. Soc. Rev., 2014, 43, 1734–1787; (b) M. Morimoto,
S. M. Bierschen, K. T. Xia, R. G. Bergman, K. N. Raymond and
F. D. Toste, Nat. Catal., 2020, 3, 969–984.
13 V. Steinmetz, F. Couty and O. R. P. David, Chem. Commun., 2009,
343–345.
14 Y. Liu, W. Zhao, C.-H. Chen and A. H. Flood, Science, 2019, 365,
159–161.
Entry
Ligand
Glutathione (GSH)
Time (h)
Yieldb (%)
1
2
3
4
5
6
7
8
TBTA
TBTA
TBTA
TBTA
Hm-TBTA
Hm-TBTA
Hm-TBTA
Hm-TBTA
None
2
2
6
24
2
2
6
24
35
7
20 mol%
20 mol%
20 mol%
None
20 mol%
20 mol%
20 mol%
6
7 (tracesc)
17
15
30
99 (83c)
a
Reaction conditions: benzyl azide (0.2 mmol), phenylacetylene
(1.0 equiv.), [CuI(CH3CN)4]PF6 1 mol%), in a 1 : 10 MeOH/CH2Cl2
solvent mixture, at 25 1C, under an argon atmosphere, in the presence
of GSH (20 mol%). b 1H NMR yields. Isolated yields.
c
CuI–ligand, preserving a high catalytic performance even in the
presence of 20 equivalents of the notorious CuAAC inhibitor GSH.
In summary, we described herein the first covalent capping
of the canonical CuAAC–ligand TBTA that has been equipped
with a CTV unit, providing a steric shield at the second
coordination sphere. We demonstrate that the resulting
cage Hm-TBTA coordinates a copper metal ion in its interior.
Hm-TBTA is a tridimensional CuAAC accelerating-ligand that
does not suffer from product inhibition. The Hm-TBTA-assisted
transformation is slower than in the case of the parent TBTA.
However, we evidence that our CTV-shielded ligand protects the
15 D. Zhang, A. Martinez and J.-P. Dutasta, Chem. Rev., 2017, 117,
4900–4942.
16 S. A. Ikbal, C. Colomban, D. Zhang, M. Delecluse, T. Brotin,
V. Dufaud, J. P. Dutasta, A. B. Sorokin and A. Martinez, Inorg. Chem.,
2019, 58, 7220–7228.
metal ion from its deactivation by external bulky nucleophiles. 17 G. Qiu, C. Colomban, N. Vanthuyne, M. Giorgi and A. Martinez,
Chem. Commun., 2019, 55, 14158–14161.
18 R. J. Hooley, Nat. Chem., 2016, 8, 202–204.
Indeed, while the catalytic performance of the TBTA ligand
was drastically reduced in the presence of bulky Cu–chelators
´
19 T. G. Breve, M. Filius, C. Araman, M. P. van der Helm, P. Hagedoorn,
(Picꢀ, GSH), the Hm-TBTA-assisted CuAAC was not affected.
Remarkably, no significant change in the catalytic efficiency
was observed even in the presence of 20 equivalents (with
respect to the copper) of the notorious biological CuAAC
inhibitor glutathione. We envisioned that our approach could
find applications in the field of CuAAC chemistry in complex
C. Joo, S. I. van Kasteren and R. Eelkema, Angew. Chem., Int. Ed.,
2020, 59, 9340–9344.
20 (a) V. O. Rodionov, S. I. Presolski, D. Diaz Diaz, V. V. Fokin and
M. G. Finn, J. Am. Chem. Soc., 2007, 129, 12705–12712;
(b) B. T. Worrell, J. A. Malik and V. V. Fokin, Science, 2013, 340,
457–460.
21 R. Kumar, S. Obrai, A. Kaur, G. Hundal, H. Meehnian and A. K. Jana,
Polyhedron, 2013, 56, 55–61.
mixtures. In particular, future work will be devoted to a deeper 22 O. Perraud, V. Robert, A. Martinez and J.-P. Dutasta, Chem. – Eur. J.,
2011, 17, 4177–4182.
23 S. Li, L. Wang, F. Yu, Z. Zhu, D. Shobaki, H. Chen, M. Wang,
understanding of the mechanism of such transformation,
using caged supporting ligands.
J. Wang, G. Qin, U. J. Erasquin, L. Ren, Y. Wang and C. Cai,
This work was supported by PRC ANR-19-CE07-0024-01.
Chem. Sci., 2017, 8, 2107–2114.
2284 | Chem. Commun., 2021, 57, 2281ꢀ2284
This journal is The Royal Society of Chemistry 2021