Journal of the American Chemical Society
Page 4 of 5
1
2
3
4
5
6
7
8
9
Int. Ed. 2008, 47, 5430–5433. (d) Shacklady-McAtee, D. M.;
AUTHOR INFORMATION
Dasgupta, S.; Watson, M. P. Org. Lett. 2011, 13, 3490–3493.
(9) DPEPhos is a competent ligand for the catalytic arylation of
EEDQ; however, coupling reactions with DPEPhos proceed with
depressed rates compared with those using PPh3. See SI for fur-
ther details.
(10) (a) Trost, B. M. Chem. Rev. 1996, 96, 395–422. (b) Hage-
lin, H.; Scensson, M.; Åkermark, B.; Norrby, P.-O. Organometal-
lics 1999, 18, 4574–4583.
Corresponding Author
Author Contributions
‡These authors contributed equally.
Notes
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(11) For an example of a Pd-olefin complex to an allylic substi-
tution product see: (a) Steinhagen, H.; Reggelin, M.; Helmchen, G.
Angew. Chem., Int. Ed. Engl. 1997, 36, 2108–2110. For an exam-
ple of a complex between Ni and diallylether that does not under-
go oxidative addition see: (b) Yamamoto, T.; Ishizu, J.; Yamamo-
to, A. J. Am. Chem. Soc. 1981, 103, 6863–6869. (c) A Ni-allyl
nitrile olefin complex has been characterized by NMR spectros-
copy: Acosta-Ramírez, A.; Flores-Gaspar, A.; Muñoz-Hernández,
M.; Arévalo, A.; Jones, W. D.; García, J. J. Organometallics 2007,
26, 1712–1720.
(12) Cremin, D. J.; Hergarty, A. F.; Begley, M. J. J. Chem. Soc.
Perkin Trans. 2 1980, 412–420.
(13) The equilibrium constant for exchange of 3 and 2a with 1
and 4 is 0.27 at 23 °C in deuterated benzene. See SI for further
details.
(14) For a recent example of the use of boronic acids as Lewis
acids see: Zheng, H.; Ghanbari, S.; Nakamura, S.; Hall, D. G.
Angew. Chem., Int. Ed. 2012, 51, 6187–6190 and references
therein.
(15) For examples wherein a boronic acid has been proposed as
both activator and coupling partner in a Suzuki reaction see: (a)
Trost, B. M.; Spagnol, M. D. J. Chem. Soc., Perkin Trans. 1 1995,
2083–2097. (b) Tsukamoto, H.; Sato, M.; Kondo, Y. Chem.
Comm. 2004, 1200–1201. (c) Tsukamoto, H.; Uchiyama, T.; Su-
zuki, T.; Kondo, Y. Org. Biomol. Chem. 2008, 6, 3005–3013. (d)
Yu, D.-A.; Shi, Z.-J. Angew. Chem., Int. Ed. 2011, 50, 7097–7100.
(e) Li, M.-B.; Wang, Y.; Tian, S.-K. Angew. Chem., Int. Ed. 2012,
51, 2968–2971.
(16) In competition experiments among the same three borox-
ines with 5-triflate, p-CF3 was favored over p-H and p-OMe by
1.8:1.1:1.0 respectively. Since this ratio is considerably lower
than that observed for the competition experiment starting from 3,
we believe that the data with 3 reflect the electronic bias in oxida-
tive addition rather than transmetalation or reductive elimination.
(17) See SI for full experimental procedures and data.
(18) For recent examples, see: (a) Matsubara, R.; Jamison, T. F.
J. Am. Chem. Soc. 2010, 132, 6880–6881. (b) Nishikata, T.; Lip-
shutz, B. H. J. Am. Chem. Soc. 2009, 131, 12103–12105.
(19) When complex 3 was decomposed in air, recovered EEDQ
showed complete conservation of enantioenrichment by chiral
HPLC.
The authors declare no competing financial interests.
ACKNOWLEDGMENT
We thank Scott Semproni for X-ray crystallographic structure
determination of 3, 5-borate, and 5-triflate, Derek Ahneman and
Jason Shields for preparing the 6-CF3-EEDQ, Thomas Graham
and Daniel Nielsen for helpful discussions, and Lotus Separations
for chiral separations of 1. Financial support provided by Prince-
ton University is gratefully acknowledged.
REFERENCES
(1) For examples see: (a) Trost, B. M.; Verhoeven, T. R. J. Am.
Chem. Soc. 1980, 102, 4730–4743. (b) Hayashi, T.; Hagihara, T.;
Konishi, M.; Kumada, M. J. Am. Chem. Soc. 1983, 105, 7767–
7768. (c) Sheffy, F. K.; Godschalx, J. P.; Stille, J. K. J. Am. Chem.
Soc. 1984, 106, 4833–4840. (d) Kurosawa, H.; Kajimaru, H.;
Ogoshi, S.; Yoneda, H.; Miki, K.; Kasai, N.; Murai, S.; Ikeda, I. J.
Am. Chem. Soc. 1992, 114, 8417–8424. In this paper, we desig-
nate stereospecific allylic oxidative addition that proceeds with
inversion as an SN2(‘) mechanism.
(2) (a) Graham, T. J. A.; Shields, J. D.; Doyle, A. G. Chem. Sci.
2011, 2, 980–984. (b) Graham, T. J. A.; Doyle, A. G. Org. Lett.
2012, 14, 1616–1619.
(3) For reactions with allylic ethers or acetals: (a) Didiuk M. T.;
Morken, J. P.; Hoveyda, A. H. J. Am. Chem. Soc. 1995, 117,
7273–7274. (b) Nomura, N.; RajanBabu, T. V. Tetrahedron Lett.
1997, 38, 1713–1716. (c) Didiuk, M. T.; Morken, J. P.; Hoveyda,
A. H. Tetrahedron 1998, 54, 1117–1130. (d) Weatherhead, G. S.;
Houser, J. H.; Ford, J. G.; Jamieson, J. Y.; Schrock, R. R.; Hov-
eyda, A. H. Tetrahedron Lett. 2000, 41, 9553–9559. For reactions
with benzylic ethers, see: (e) Taylor, B. L. H; Swift, E. C.;
Waetzig, J. D.; Jarvo, E. R. J. Am. Chem. Soc. 2011, 133, 389–
391. (f) Greene, M. A.; Yonova, I. M.; Williams, F. J.; Jarvo, E. R.
Org. Lett. 2012, 14, 4293–4296. (g) Taylor, B. L. H.; Jarvo, E. R.
Synlett 2011, 2761–2765.
(4) Hartwig, J. F. Organotransition Metal Chemistry; Universi-
ty Science Books: Sausalito, CA, 2010.
(5) (a) Louw, W. J.; de Waal, D. J. A.; Chapman, J. E. Chem.
Comm. 1977, 845–846. (b) Crabtree, R. H.; Quirk, J. M.; Fille-
been-Khan, T.; Morris, G. E. J. Organomet. Chem. 1979, 181,
203–212. Singleton and coworkers have reported a secondary
carbon isotope effect for the oxidative addition of a tertiary allylic
acetate to Pd that is consistent with an SN1-like mechanism: (c)
Singleton, D. A.; Christian, C. F. Tetrahedron Lett. 2005, 46,
1631–1634.
(6) (a) Sepelak, D. J.; Pierpont, C. G.; Barefield, E. K.; Budz, J.
T.; Poffenberger, C. A. J. Am. Chem. Soc. 1976, 98, 6178–6185.
(b) Ogoshi, S.; Oka M.-a.; Kurosawa, H. J. Am. Chem. Soc. 2004,
126, 11802–11803. (c) Barefield, E. K.; Carrier, A. M.; Sepalek,
D. J.; Derveer, D. G. Organometallics 1985, 4, 1395–1399.
(7) For a review see: Beller, M.; Eckert, W. Angew. Chem., Int.
Ed. 2000, 39, 1010–1027.
(20) Granberg, K. L.; Bäckvall, J.-E. J. Am. Chem. Soc. 1992,
114, 6858–6863.
(21) Streitwieser, A.; Klein, H. S. J. Am. Chem. Soc. 1964, 86,
5170–5173.
(22) (a) Stang, P. J.; Schiaveill, M. D.; Chenault, H. K.;
Breidegam, J. L. Organometallics 1984, 3, 1133–1134. (b) Griffin,
T. R.; Cook, D. B.; Haynes, A.; Pearson, J. M.; Monti, D.; Morris,
G. E. J. Am. Chem. Soc. 1996, 118, 3029–3030. (c) Habibzadeh,
S.; Rashidi, M.; Nabavizadeh, S. M.; Mahmoodi, L.; Hosseini, F.
N.; Puddephatt, R. J. Organometallics 2010, 29, 82–88.
(23) Nabavizadeh, S. M.; Habibzadeh, S.; Rashidi, M.; Pud-
dephatt, R. J. Organometallics 2010, 29, 6359–6368.
(8) (a) Davis, J. L.; Dhawan, R.; Arndtsen, B. A. Angew. Chem.,
Int. Ed. 2004, 43, 590–593. (b) Lu Y.; Arndtsen, B. A. Org. Lett.
2007, 9, 4395–4397. (c) Lu, Y.; Arndtsen, B. A. Angew. Chem.,
ACS Paragon Plus Environment