10.1002/anie.202008314
Angewandte Chemie International Edition
RESEARCH ARTICLE
A. Wyer, S. Brøndsted Nielsen), Springer, Berlin/Heidelberg, 2003,
Chapter 3.
In this work, we have reported the synthesis of new dyads where
two charged dyes (Rhodamine 575 or Rhodamine B) are bridged
by almost linear linkers (rods). The preparations were based on
acetylenic coupling reactions, and oxidative alkyne-alkyne
dimerizations were finely tuned to reach optimum conditions for
the various rhodamine scaffolds.
Gas-phase fluorescence studies on the cationic dyes reveal
strong polarization of the -linker when it experiences the electric
field from one or two dyes. As a result, -spacers provide efficient
shielding of charges, i.e., they reduce the Coulomb interaction
between two dye cations. This was evidenced from almost
identical fluorescence spectra of homodimers and corresponding
monomer derivatives. In contrast, two dye cations repel each
other strongly when connected by an alkyl bridge, which results
in red-shifted emission spectra due to the Stark effect.
In the case of heterodimers, a -spacer acts as a shield
against the dipole-dipole interaction that governs energy transfer
from donor to acceptor. Hence the energy-transfer efficiency is
much reduced compared to that for corresponding systems with
alkyl spacers. Indeed, from DFT-calculated structures, we provide
an estimated Förster distance of only 20.5 2.5 Å for the
Rhodamine 575 / Rhodamine B FRET pair tethered together with
a -spacer despite a high spectral overlap of donor emission and
acceptor absorption. This screening effect may have direct
implications on the energy transfer when fluorophores are
integrated in biological systems where aromatic units potentially
could act as -shields.
[10] a) B. Albinsson, M. P. Eng, K. Pettersson, M. U. Winters, Phys. Chem.
Chem. Phys. 2007, 9, 5847-5864; b) P. P. Lainé, S. Campagna, F.
Loiseau, Coord. Chem. Rev. 2008, 252, 2552-2571; c) M. Natali, S.
Campagna, F. Scandola, Chem. Soc. Rev. 2014, 43, 4005-4018; d) Y.
Hou, X. Zhang, K. Chen, D. Liu, Z. Wang, Q. Liu, J. Zhao, A. Barbon, J.
Mater. Chem. C 2019, 7, 12048-12074.
[11] a) M. J. Jou, X. Chen, K. M. K. Swamy, H. N. Kim, H.-J. Kim, S. Lee, J.
Yoon, Chem. Commun. 2009, 46, 7218-7220; b) O. A. Egorova, H. Seo,
A. Chatterjee, K. H. Ahn. Org. Lett. 2010, 12, 401-403; c) X. Cao, W. Lin,
Y. Ding, Chem. Eur. J. 2011, 17, 9066-9069.
[12] a) N. B. Yapici, S. Jockusch, A. Moscatelli, S. R. Mandalapu, Y. Itagaki,
D. K. Bates, S. Wiseman, K. M. Gibson, N. J. Turro, L. Bi, Org. Lett. 2012,
14, 50-53; b) N. B. Yapici, S. R. Mandalapu, T-L. Chew, S. Khuon, L. Bi,
Bioorg. Med. Chem. Lett. 2012, 22, 2440-2443; c) N. B. Yapici, Y. Bi, P.
Li, X. Chen, X. Yan, S. R. Mandalapu, M. Faucett, S. Jockusch, J. Ju, K.
M. Gibson, W. J. Pavan, L. Bi, Sci. Rep. 2015, 5, 8576.
[13] M. K. Lee, P. Rai, J. Williams, R. J. Twieg, W. E. Moerner, J. Am. Chem.
Soc. 2014, 136, 14003-14006.
[14] E. L. Spitler, J. M. Monson, M. M. Haley, J. Org. Chem. 2008, 73, 2211-
2223.
[15] a) K. Qvortrup, A. S. Andersson, J.-P. Mayer, A. S. Jepsen, M. Brøndsted
Nielsen, Synlett 2004, 2818-2820; b) A. S. Andersson, K. Qvortrup, E. R.
Torbensen, J.-P. Mayer, J.-P. Gisselbrecht, C. Boudon, M. Gross, A.
Kadziola, K. Kilså, M. Brøndsted Nielsen, Eur. J. Org. Chem. 2005, 3660-
3671; c) A. R. Gholap, K. Venkatasan, R. Pasricha, T. Daniel, R. J. Lahoti,
K. V. Srinivasan, J. Org. Chem. 2005, 70, 4869-4872; d) S. S. Palimkar,
P. H. Kumar, R. L. Lahoti, K. V. Srinivasan, Tetrahedron 2006, 62, 5109-
5115; e) N. Fu, Y. Zhang, D. Yang, B. Chen, X. Wu, Catalysis Comm.
2008, 9, 976-979.
[16] a) W. Lin, X. Cao, Y. Ding, L. Yuan, L. Long, Chem. Commun. 2010, 46,
3529-3531; b) R. Kagit, M. Yildirim, O. Ozay, S. Yesilot, H. Ozay, Inorg.
Chem. 2014, 53, 2144-2151; c) J.-T. Hou, K. Li, K.-K. Yu, M.-Z. Ao, X.
Wang, X.-Q Yu, Analyst 2013, 138, 6632-6638.
Acknowledgements
[17] P. Suppan, N. Ghoneim, Solvatochromism, The Royal Society of
Chemistry, Cambridge, UK, 1997, Chapter 3.
SBN and MBN acknowledge support from the Independent
Research Fund Denmark | Natural Sciences (9040-00041B).
[18] a) M. W. Forbes, R. A. Jockusch, J. Am. Soc. Mass Spectrom. 2011, 22,
93-109; b) S. K. Sagoo, R. A. Jockusch, J. Photochem. Photobiol. A:
Chem. 2011, 220, 173-178.
[19] Gaussian 03, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel,
G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T.
Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi,
V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.
Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M.
Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C.
Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J.
Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma,
G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich,
A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K.
Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S.
Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,
I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng,
A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen,
M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Wallingford CT,
2004.
Keywords: Alkynes • Dyads • Cross-coupling • Fluorescence •
gas-phase FRET
[1]
[2]
Y. C. Cheng,G. R.Fleming, Annu. Rev.Phys.Chem. 2009, 60, 241-262.
C. T. Middleton, K. de la Harpe, C. Su, Y. K. Law, C. E. Crespo-
Hernandez, B. Kohler, Annu. Rev.Phys.Chem. 2009, 60, 217-239.
C. R. Cantor, P. R. Schimmel, Biophysical Chemistry, Part II, Techniques
for the Study of Biological Structure and Function, W. H. Freeman and
Company, New York, 1980, p. 392f.
[3]
[4]
[5]
J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd edn,
Kluwer Academic/Plenum Publishers, New York, 1999.
C. Kjær, H. Lissau, N. K. G. Salinas, A. Ø. Madsen, M. H. Stockett, F. E.
Storm, T. H. Hansen, J. U. Andersen, B. W. Laursen, K. V. Mikkelsen, M.
Brøndsted Nielsen, S. Brøndsted Nielsen, ChemPhysChem 2019, 20,
533-537.
[6]
[7]
C. Kjær, Y. Zhao, M. H. Stockett, L. Chen, K. Hansen, S. Brøndsted
Nielsen, Phys. Chem. Chem. Phys. 2020, 22, 11095-111000.
a) J. T. Khoury, S. E. Rodriguez-Cruz, J. H. Parks, J. Am. Soc. Mass
Spectrom. 2002, 13, 696-708; b) V. Frankevich, X. W. Guan, M. Dashtiev,
R. Zenobi, Eur. J. Mass Spectrom. 2005, 11, 475-482; c) Q.-Z. Bian, M.
W. Forbes, F. O. Talbot, R. A. Jockusch, Phys. Chem. Chem. Phys. 2010,
12, 2590-2598; d) M. Kordel, S. Schooss, C. Neiss, L. Walter, M. M.
Kappes, J. Phys. Chem. A 2010, 114, 5509-5514; e) K. Honma, Phys.
Chem. Chem. Phys. 2018, 20, 26859-26869.
[20] M. U. Winters, J. Kärnbratt, M. Eng, C. J. Wilson, H. L. Anderson, B.
Albinsson, J. Phys. Chem. C 2007, 111, 7192-7199.
[21] F. O. Talbot, A. Rullo, H. Yao, R. A. Jockusch, J. Am. Chem. Soc. 2010,
132, 16156-16164.
[8]
[9]
a) M. H. Stockett, J. Houmøller, K. Støchkel, A. Svendsen, S. Brøndsted
Nielsen, Rev. Sci. Instrum. 2016, 87, 053103; b) M. H. Stockett, J.
Houmøller, S. Brøndsted Nielsen, J. Chem. Phys. 2016, 145, 104303.
a) S. M. J. Wellman, R. A. Jockusch, J. Phys. Chem. A 2015, 119, 6333-
6338; b) J. A. Wyer in Photophysics of Ionic Biochromophores (Eds.: J.
9
This article is protected by copyright. All rights reserved.