Syntheses and Coordination Chemistry of Bis(4-pyridyl)- and Mixed (4-pyridyl)(2-pyridyl)-Phospholes 347
C.; Balavoine, G. G. A. Tetrahedron, 2000, 56, 85;
Synthesis of the Derivative 7
(d) Escalle, A.; Mora, G.; Gagosz, F.; Mezailles, N.; Le
Goff, X. F.; Jean, Y.; Le Floch, P. Inorg Chem 2009,
48, 8415; (e) Thoumazet, C.; Melaimi, M.; Ricard, L.;
Le Floch, P. C. R. Chim 2004, 7, 823; (f) Matano, Y.;
Nakabuchi, T.; Fujishige, S.; Nakano, H.; Imahori,
H. J Am Chem Soc 2008, 130, 990; (g) Matano,
Y.; Miyajima, T.; Ochi, N.; Nakabuchi, T.; Shiro,
M.; Nakao, Y.; Sakaki, S.; Imahori, H. J Am Chem
Soc 2008, 130, 16446; (h) Matano, Y.; Nakashima,
M.; Saito, A.; Imahori, H. Org Lett 2009, 11, 3338;
(i) Burck, S.; Gudat, D.; Nieger, M. Angew Chem, Int
Ed 2007, 46, 2919; (j) Burck, S.; Gudat, D.; Nieger, M
Organometallics 2009, 28, 1447.
To a CH2Cl2 solution (5 mL) of the ligand 2
(0.020 g, 0.055 mmol), a CH2Cl2 solution (5 mL) of
[PtCl2(CH3CN)2] (0.019 g, 0.055 mmol) was added
at room temperature. After 36 h, the solvent was
evaporated. The residue was washed with pentane,
and a yellow powder of 7 was recovered (yield 80%,
1
0.028 g, 0.04 mmol). NMR H (200 MHz, CDCl3): δ
1.9 (m, 4H, C CCH2CH ), 2.9 (m, 2H, C CCH2), 4.66
2
(bd, 2 J(P, H) = 8.4 Hz, C CH), 6.3 (m,1H, PCH),
ꢁ
6.9–8.0 (m, 11H, pyridyl H3 , pyridyl H2, pyridyl H3,
ꢁ
pyridyl H5 , phenyl Hortho, phenyl Hmeta, phenyl Hpara),
[5] (a) Pearson, R. G. Inorg Chem 1973, 12, 712;
(b) Harvey, J. N.; Heslop. K. M.; Orpen, A. G.; Pringle,
P. G. Chem Commun 2003, 278.
[6] Fave, C.; Hissler, M.; Se´ne´chal, K.; Ledoux, I.; Zyss,
J.; Re´au, R. Chem Commun 2002, 1674.
3
ꢁ
8.20 (bt, 1H, J (H, H) = 5.6 Hz, pyridyl H4 ), 10.15 (d,
J(H, H) = 7 Hz, pyridyl H6 ). NMR 31P{1H}(81 MHz,
3
ꢁ
CDCl3): δ = 40.5 (1 JP-Pt = 3815 Hz); elemental anal-
ysis (%) calcd for C24H21N2P1Pt1Cl2: C 45.44, H 3.34,
N 4.42; found: C 45.69, H 3.12, N 4.09.
[7] (a) Graule, S.; Rudolph, M.; Vanthuyne, N.;
Autschbach, J.; Roussel, C.; Crassous, J.; Re´au, R.
J Am Chem Soc 2009, 131, 3183; (b) Graule, S.;
Rudolph, M.; Shen, W.; Lescop, C.; Williams. J. A.
G.; Autschbach, J.; Crassous, J.; Re´au, R. Chem Eur J
2010, 16, 5976; (c) Shen, W.; Graule, S.; Crassous, J.;
Lescop, C.; Gornitzka, H.; Re´au, R. Chem Commun
2008, 850.
[8] (a) Sauthier, M.; Le Guennic, B.; Deborde, V.; Toupet,
L.; Halet, J-F.; Re´au, R. Angew Chem, Int Ed 2001,
40, 228; (b) Sauthier, M.; Leca, F.; Toupet, L.;
Re´au, R. Organometallics 2002, 21, 1591; (c) Leca,
F.; Sauthier, M.; Deborde, V.; Toupet, L.; Re´au, R.
Chem Eur J 2003, 9, 3785; (d) Leca, F.; Lescop, C.;
Rodriguez-Sanz, E.; Costuas, K.; Halet, J-F.; Re´au, R.
Angew Chem, Int Ed 2005, 44, 4362; (e) Nohra, B.;
Rodriguez-Sanz, E.; Lescop, C.; Re´au, R.; Chem Eur J
2008, 14, 3391; (f) Welsch, S.; Nohra, B.; Peresypkina,
E. V.; Lescop, C.; Scheer, M.; Re´au, R. Chem Eur J
2009, 15, 4685; (g) Welsch, S.; Lescop, C.; Re´au, R.;
Scheer, M. Inorg Chem 2009, 47, 2994.
REFERENCES
[1] (a) Braunstein, P.; Naud, F. Angew Chem, Int Ed Engl
2001, 40, 680; (b) Helmchem, G.; Pfaltz, A. Acc Chem
Res 2000, 33, 336; (c) Drury, W. J., III; Zimmermann,
N.; Keenan, M.; Hayashi, M.; Kaiser, S.; Goddard,
R.; Pfaltz, A. Angew Chem, Int Ed Engl 2004, 43, 70;
(d) Chelucci, G.; Orru, G.; Pinna, G. A. Tetra-
hedron 2003, 59, 9471; (e) Espinet, P.; Soulan-
tica, K. Coord Chem Rev 1999, 193–195,
499; (f) Braunstein, P.; Knorr, M.; Stern,
C. Coord Chem Rev 1998, 178–180, 9039;
(g) Bianchini, C.; Meli, A. Coord Chem Rev 2002,
225, 35; (g) Guiry, P. J.; Saunders, C. P. Adv Synth
Catal 2004, 346, 497; (h) Carrasco, A. C.; Pidko, E.
A.; Masdeu-Bulto, A. M.; Lutz, M.; Spek, A. L.; Vogt,
D.; Mu¨ller, C. New J Chem 2010, 34, 1547.
[9] (a) Nohra, B.; Graule, S.; Lescop, C.; Re´au, R. J Am
Chem Soc 2006, 128, 3520; (b) Yao, Y.; Shen; W.;
Nohra, B.; Lescop, C.; Re´au, R. Chem Eur J 2010, 16,
7143.
[10] (a) Leca, F.; Sauthier, M.; le Guennic, B.; Lescop,
C.; Toupet, L.; Halet, J-F.; Re´au, R. Chem Commun
2003, 1774; (b) Leca, F.; Lescop, C.; Toupet, L.; Re´au,
R. Organometallics 2004, 23, 6191; (c) Nyula´szi, L.;
Hollo´czki, O.; Lescop, C.; Hissler, M.; Re´au, R. Org
Biomol Chem 2006, 4, 996.
[11] Leca, F.; Fernandez, F.; Muller, G.; Lescop, C.; Re´au,
R.; Gomez, M. Eur J Inorg Chem 2009, 5583.
[12] (a) Fagan, P. J.; Nugent, W. A. J Am Chem Soc 1988,
110, 2310; (b) Fagan, P. J.; Nugent, W. A.; Calabrese,
J. C. J Am Chem Soc 1994, 116, 1880.
[2] (a) Mathey, F. Phosphorus-Carbon Heterocyclic
Chemistry: The Rise of a New Domain; Elsevier Sci-
ence: Oxford, UK, 2001; (b) Dillon, K.; Mathey, F.;
Nixon, J. F. Phosphorus: The Carbon Copy; Wiley:
Chichester, UK, 1998; (c) Nyulaszi, L. Chem Rev
2001, 101, 1229; (d) Mathey, F. Angew Chem, Int Ed
2003, 42, 1578; (e) Baumgartner, T.; Re´au, R. Chem
Rev 2006, 106, 4681; (f) Re´au, R., Dyer, P. In Com-
prehensive Heterocyclic Chemistry III’; Katritzky, A.
R.; Ramsden, C. A.; Scriven, E. F. V.; Taylor, R. J. K.
(Eds.); Elsevier: Oxford, UK, 2008; Vol.3, pp. 1029–
1148.
[3] Regitz M.; Scherer O. J. Multiple Bonds and Low Co-
ordination in Phosphorus Chemistry; Georg Thieme:
Stuttgart, Germany, 1990.
[13] (a) Le Vilain, D.; Hay, C.; Deborde, V.; Toupet,
L.; Re´au, R. Chem Commun 1999, 345; (b) Hay,
C.; Hissler, M.; Fischmeister, C.; Rault-Berthelot, J.;
Toupet, L.; Nyulaszi, L.; Re´au, R. Chem Eur J 2001,
7, 4222.
[14] Attar, S.; Bearden, W. H.; Allcock, N. W.; Alyea, E. C.;
Nelson, J. H. Inorg Chem 1990, 29, 425.
[4] (a) Lescop, C.; Hissler, M. Tomorrow’s Chemistry
Today, Concepts in Nanoscience, Organic Materials
and Environmental Chemistry, Pignatoro, B. (Ed.);
Wiley-VCH: Weinheim, Germany, 2008; pp. 295–319;
(b) Ogasawara, M.; Ito, A., Yoshida, K.; Hayashi,
T. Organometallics 2006, 25, 2715; (c) Tissot, O.;
Hydrio, J.; Gouygou, M.; Dallemer, F.; Daran, J.
Heteroatom Chemistry DOI 10.1002/hc