Journal of the American Chemical Society
COMMUNICATION
’ ASSOCIATED CONTENT
Tatsumi, K. J. Organomet. Chem. 2009, 694, 2820–2824. (c) Sakamoto,
M. PhD thesis, Nagoya University: Japan, 2010. Theoretical study:
(d) Tao, J.; Li, S. Dalton Trans. 2010, 39, 857–863.
(13) (a) Schlaf, M.; Lough, A. J.; Morris, R. H. Organometallics 1996,
15, 4423–4436. (b) Sellmann, D.; Rackelmann, G. H.; Heinemann,
F. W. Chem.—Eur. J. 1997, 3, 2071–2080. (c) Seino, H.; Misumi, Y.;
Hojo, Y.; Mizobe, Y. Dalton Trans. 2010, 39, 3072–3082.
(14) For an excellent highlight on cooperating ligands in transition
metal catalysis, see: Gr€utzmacher, H. Angew. Chem., Int. Ed. 2008, 47,
1814–1818.
(15) For authoritative reviews of silane activation by transition
metals, see: (a) Perutz, R. N.; Sabo-Etienne, S. Angew. Chem., Int. Ed.
2007, 46, 2578–2592. (b) Lachaize, S.; Sabo-Etienne, S. Eur. J. Inorg.
Chem. 2006, 2115–2127. (c) Nikonov, G. I. Adv. Organomet. Chem.
2005, 53, 217–309. (d) Lin, Z. Chem. Soc. Rev. 2002, 31, 239–245.
(e) Corey, J. Y.; Braddock-Wilking, J. Chem. Rev. 1999, 99, 175–292.
(16) Frick, U.; Simchen, G. Synthesis 1984, 929–930.
(17) For related gas-phase measurements including pyrrole, see:
Crestoni, M. E.; Fornarini, S.; Speranza, M. J. Am. Chem. Soc. 1990, 112,
6929–6935.
(18) Those reactions require a base to abstract a proton from the
Wheland intermediate (cf. ref 19c). Excess base also prevents the facile
reverse reaction!
(19) Electrophilic silylation of aromatic compounds is also referred
to as “sila-Friedel-Crafts reactions”, and only a handful of examples are
known to date: (a) Sollott, G. P.; Peterson, Jr., W. R. J. Am. Chem. Soc.
1967, 89, 5054-5056 (intermolecular). (b) Olah, G. A.; Bach, T.;
Prakash, G. K. S. J. Org. Chem. 1989, 54, 3770-3771 (intermolecular).
(c) Furukawa, S.; Kobayashi, J.; Kawashima, T. J. Am. Chem. Soc. 2009,
131, 14192-14193 (intramolecular).
(20) Lakhdar, S.; Westermaier, M.; Terrier, F.; Goumont, R.;
Boubaker, T.; Ofial, A. R.; Mayr, H. J. Org. Chem. 2006, 71, 9088–9095.
(21) For a review of direct transition metal-catalyzed functionaliza-
tion of heterocycles, see: (a) Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev.
2007, 36, 1173–1193. For general reviews on regioselective indole
functionalization, see: (b) Bandini, M.; Eichholzer, A. Angew. Chem., Int.
Ed. 2009, 48, 9608–9644. (c) Joucla, L.; Djakovitch, L. Adv. Synth. Catal.
2009, 351, 673–714.
S
Supporting Information. Experimental details and char-
b
acterization data. This material is available free of charge via the
’ AUTHOR INFORMATION
Corresponding Author
martin.oestreich@uni-muenster.de;
ohki@mbox.chem.nagoya-u.ac.jp; i45100a@nucc.cc.nagoya-u.ac.jp
’ ACKNOWLEDGMENT
This research was supported by the Deutsche Forschungsge-
meinschaft (International Research Training Group M€unster-
Nagoya, GRK 1143 with a predoctoral fellowship to H.F.T.K.,
2007-2010), the G-COE program in chemistry (Nagoya), and a
Grant-in-Aid for Scientific Research (No. 18GS0207) from the
Ministry of Education, Culture, Sports, Science and Technology,
Japan. We acknowledge Dr. Christian Kesenheimer (Nagoya) for
a preliminary experiment, Dr. Klaus Bergander (M€unster) for
expert advice with the NMR spectroscopic measurements, and
Barbara Hildmann (M€unster) for her skillful technical assistance.
’ REFERENCES
(1) For leading monographs on “C-H activation”, see: (a) Top.
Curr. Chem.; Yu, J.-Q.; Shi, Z., Eds.; Springer: Heidelberg, 2010; Vol.
292. (b) Handbook of C-H Transformations; Dyker, G., Ed.; Wiley-
VCH: Weinheim, 2005; Vol. 1.
(2) For a review, see: Kakiuchi, F.; Chatani, N. Adv. Synth. Catal.
2003, 345, 1077–1101.
(3) Me2(Me3SiO)Si-H in Ir(I) catalysis: Gustavson, W. A.; Epstein, P. S.
Curtis, M. D. Organometallics 1982, 1, 884–885.
(4) R3Si-H (with R = alkyl and aryl) in Rh(III) and Ru(II) catalysis:
(a) Djurovich, P. I.; Dolich, A. R.; Berry, D. H. J. Chem. Soc., Chem.
Commun. 1994, 1897–1898. (b) Ezbiansky, K.; Djurovich, P. I.; LaFor-
est, M.; Sinning, D. J.; Zayes, R.; Berry, D. H. Organometallics 1998, 17,
1455–1457. (c) Ihara, H.; Suginome, M. J. Am. Chem. Soc. 2009, 131,
7502–7503.
(5) R3Si-H (with R = alkyl and aryl) in Ru3(CO)12 catalysis: (a)
Kakiuchi, F.; Matsumoto, M.; Tsuchiya, K.; Igi, K.; Hayamizu, T.;
Chatani, N.; Murai, S. J. Organomet. Chem. 2003, 686, 134–144. (b)
Kakiuchi, F.; Tsuchiya, K.; Matsumoto, M.; Mizushima, E.; Chatani, N.
J. Am. Chem. Soc. 2004, 126, 12792–12793.
(6) R3Si-H (with R = alkyl, aryl, and OSiMe3) in Pt(IV)/Pt(II)
catalysis: (a) Tsukada, N.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127,
5022–5023. (b) Murata, M.; Fukuyama, N.; Wada, J.-i.; Watanabe, S.;
Masuda, Y. Chem. Lett. 2007, 36, 910–911.
(7) R3Si-H (with R = alkyl, aryl, and Oalkyl) in Ir(I) catalysis:
(a) Lu, B.; Falck, J. R. Angew. Chem., Int. Ed. 2008, 47, 7508–7510.
(b) Simmons, E. M.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 17092–
17095.
(8) RMe2Si-SiMe2R in Pt(0) catalysis: Williams, N. A.; Uchimaru,
Y.; Tanaka, M. J. Chem. Soc., Chem. Commun. 1995, 1129–1130.
(9) RF2Si-SiF2R (with R = t-Bu, s-Bu, and n-Bu) in Ir(I) catalysis:
(a) Ishiyama, T.; Sato, K.; Nishio, Y.; Miyaura, N. Angew. Chem., Int. Ed.
2003, 42, 5346–5348. (b) Ishiyama, T.; Sato, K.; Nishio, Y.; Saiki, T.;
Miyaura, N. Chem. Commun 2005, 5065–5067. (c) Saiki, T.; Nishio, Y.;
Ishiyama, T.; Miyaura, N. Organometallics 2006, 25, 6068–6073.
(10) Me3Si-SiMe3 in Rh(I) catalysis: Tobisu, M.; Ano, Y.; Chatani,
N. Chem. Asian J. 2008, 3, 1585–1591.
(11) For an authoritative review of transition metal-catalyzed carbon-
heteroatom bond formation, see: Hartwig, J. F. Nature 2008, 455, 314–322.
(12) (a) Ohki, Y.; Sakamoto, M.; Tatsumi, K. J. Am. Chem. Soc. 2008,
130, 11610–11611. (b) Sakamoto, M.; Ohki, Y.; Kehr, G.; Erker, G.;
(22) Ohki, Y.; Takikawa, Y.; Sadohara, H.; Kesenheimer, C.;
Engendahl, B.; Kapatina, E.; Tatsumi, K. Chem. Asian J. 2008, 3,
1625–1635.
(23) Ellison, J. J.; Ruhlandt-Senge, K.; Power, P. P. Angew. Chem., Int.
Ed. Engl. 1994, 33, 1178–1180.
4a
(24) We note that [Ru(p-cymene)Cl2]2 and Ru3(CO)12,5 which
are known to catalyze dehydrogenative couplings of Si-H and C(sp2)-
H bonds, are not catalytically active. We understand this as further
evidence in support of our Ru-S cooperative catalysis.
(25) Donor solvents deactivate 2, whereas non-nucleophilic sol-
vents, i.e., hydrocarbons such as n-hexane, are tolerated.
(26) A color change from green (complex 2) to yellow (silane
adduct 26) visualizes successful Si-H bond activation. No color change
was observed with 6d or 6e.
(27) Prakash, G. K. S.; Bae, C.; Wang, Q.; Rasul, G.; Olah, G. A.
J. Org. Chem. 2000, 65, 7646–7649.
(28) Besora, M.; Lledꢀos, A.; Maseras, F. Chem. Soc. Rev. 2009, 38,
957–966.
(29) Ir(III) complex: (a) Yang, J.; White, P. S.; Schauer, C. K.;
Brookhart, M. Angew. Chem., Int. Ed. 2008, 47, 4141–4143. (b) Park, S.;
Brookhart, M. Organometallics 2010, 29, 6057–6064. Ru(II) complex:
(c) Gutsulyak, D. V.; Vyboishchikov, S. F.; Nikonov, G. I. J. Am. Chem.
Soc. 2010, 132, 5950–5951.
(30) Parks, D. J.; Piers, W. E. J. Am. Chem. Soc. 1996, 118, 9440–
9441.
(31) Rendler, S.; Oestreich, M. Angew. Chem., Int. Ed. 2008, 47,
5997–6000.
(32) Tan, M. X.; Zhang, Y. Tetrahedron Lett. 2009, 50, 4912–4915.
3315
dx.doi.org/10.1021/ja111483r |J. Am. Chem. Soc. 2011, 133, 3312–3315