G. Shankaraiah et al. / Tetrahedron Letters 52 (2011) 4885–4887
4887
OH
HO
NHBoc
NHBoc
OBn
O
O
m
l
k
OH
N
OH
OH
8
H
OH
HO
HO
HO
(+) Radicamine B (4)
7
17
Scheme 3. Synthesis of (+) radicamine B (4). Reagents and conditions: (k) K2CO3, MeOH, reflux, 1 h, 95%; (l) Pd/C, H2 balloon, MeOH, overnight, 90%; (m) TFA, DCM, 0 °C,
30 min then solid NaHCO3, 30 h, 40%.
compounds were well characterized by the 1H NMR, 13C NMR,
8. (a) Kumar, R. S. C.; Reddy, G. V.; Shankaraiah, G.; Babu, K. S.; Rao, J. M.
Tetrahedron Lett. 2010, 51, 1114; Kumar, R. S. C.; Sreedhar, E.; Reddy, G. V.;
Mass and IR spectroscopic techniques.20
Babu, K. S.; Rao, J. M. Tetrahedron: Asymmetry 2009, 20, 1160.
In conclusion, we have developed an efficient, linear synthetic
protocol for synthesis of polyhydroxy pyrrolidine alkaloid, (+)-rad-
icamine B (4) using Sharpless epoxidation and HWE olefination as
key steps. This general synthetic route demonstrates its versatility
toward the synthesis of highly functionalized pyrrolidine and also
paves the way for the structurally related analogues. On the basis
of the route described herein, further work toward preparation of
the library of polyhydroxy pyrrolidine alkaloids for biological anal-
ysis is in progress in our laboratory.
9. Clive, D. L. J.; Stoffman, E. J. L. Org. Biomol. Chem. 2008, 6, 1831.
10. The enantioselectivity was determined by HPLC [Waters Atlantis dC18,
150 ꢂ 4.6 mm, 5
l, 210 nm, eluent, acetonitrile–water (1:1), 10 lL injection
volume, flow rate 1 mL/min, retention time 5.525 min].
11. Paraskar, A. S.; Sudalai, A. Tetrahedron 2006, 62, 5756.
12. Liu, G.; Romo, D. Org. Lett. 2009, 11, 1143.
13. Crich, D.; Banerjee, A. J. Am. Chem. So. 2006, 128, 8078.
14. Cui, M.; Song, H.; Feng, A.; Wang, Z.; Wang, Q. J. Org. Chem. 2010, 75,
7018.
15. Fu, R.; Ye, J. L.; Dai, X. J.; Ruan, Y. P.; Huang, P. Q. J. Org. Chem. 2010, 75,
4230.
16. The diastereoselectivity was determined by HPLC [Waters HR C18,
300 ꢂ 3.9 mm, 6
l, 210 nm, eluent, acetonitrile–water (6:4), 20 lL injection
volume, flow rate 1 mL/min, retention time 9.067 min].
Acknowledgments
17. Marumoto, S.; Jaber, J. J.; Vitale, J. P.; Rychnovsky, S. D. Org. Lett. 2002, 4,
3919.
18. (a) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734; (b) Hevko, J. M.; Dua,
S.; Taylor, M. S.; Bowie, J. H. J. Chem. Soc., Perkin Trans. 2 1998, 1629; (c)
Chandrasekhar, S.; Vijaykumar, B. V. D.; Pratap, T. V. Tetrahedron: Asymmetry
2008, 19, 746.
The authors gratefully acknowledge the keen interest shown by
Dr. J. S. Yadav, Director, IICT, Hyderabad. R.S.C.K. and B.P. thank
CSIR and UGC, New Delhi for financial support.
19. Experimental procedure for the synthesis (+)- radicamine B (4): To a stirred
solution of the compound 7 (0.2 g, 0.61 mmol) in 2 mL DCM at 0 °C was added
TFA (1 mL) drop wise and allowed to stir at the same temparature for 30 min.
After completion of the reaction (by TLC analysis), solvent and excess TFA were
removed in high vacuum. 10 mL of dry DCM was added to the reaction mixture
at 0 °C under nitrogen atmosphere. Reaction was quenched with solid NaHCO3
and stirred at room temperature for 30 h. The reaction mixture was filtered
and washed with DCM (10 ꢂ 2 mL), the organic layer was separated and
evaporated under reduced pressure to afford the crude product which was
purified by column chromatography on neutral alumina using chloroform–
MeOH (6:4) as a eluent to afford target compound 4 in 40% (0.05 g) yield.
20. Spectral data of selected compounds; Compound 7: pale yellow sticky liquid;
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. (a) Katritzky, A. R.; Rees, C. W. Comprehensive Heterocyclic Chemistry; Pergamon
Press: New York, 1984; Vol. 1.; (b) Koch, M. A.; Schuffenhauer, A.; Scheck, M.;
Wetzel, S.; Casaulta, M.; Odermatt, A.; Ertl, P.; Waldmann, H. Proc. Natl. Acad. Sci.
U.S.A. 2005, 102, 17272; (c) Phillips, S. D.; Castle, R. N. J. Heterocycl. Chem. 1981,
18, 223; (d) Stark, L. M.; Lin, X. F.; Flippin, L. A. J. Org. Chem. 2000, 65, 3227.
2. (a) Saul, R.; Chambers, J. P.; Molyneux, R. J.; Elbein, A. D. Arch. Biochem. Biophys.
1983, 221, 593; (b) Saul, R.; Molyneux, R. J.; Elbein, A. D. Arch. Biochem. Biophys.
1984, 230, 668; (c) Evans, S. V.; Fellows, L. E.; Shing, T. K. M.; Fleet, G. W. J.
Phytochemistry 1985, 24, 1953; (d) Molyneux, R. J.; Pan, Y. T.; Tropea, J. E.;
Elbein, A. D.; Lawyer, C. H. J. Nat. Prod. 1993, 56, 1356.
3. (a) Grusters, R. A.; Neefjet, J. J.; Tersmette, M.; de Goede, R. E. Y.; Tulp, A.;
Huisman, H. G.; Miedeman, F.; Ploegh, H. L. Nature (London) 1987, 330, 74; (b)
Elbein, A. D. Annu. Rev. Biochem. 1987, 56, 497; (c) Look, G. C.; Fotsch, C. H.;
Wong, C. H. Acc. Chem. Res. 1993, 26, 82.
4. Tsuchiya, K.; Kobayashi, S.; Harada, T.; Kurokawa, T.; Nakagawa, T.; Shimada,
N.; Kobayashi, K. J. Antibiot. 1995, 48, 626.
5. (a) Shibano, M.; Tsukamoto, D.; Masuda, A.; Tanaka, Y.; Kusano, G. Chem.
Pharm. Bull. 2001, 49, 1362; (b) Shibano, M.; Tsukamoto, D.; Kusano, G.
Heterocycles 2002, 57, 1539; (c) Ganem, B. Acc. Chem. Res. 1996, 29, 340; (d)
Compain, P.; Martin, O. R. Bioorg. Med. Chem. 2001, 9, 3077; (e) Asano, N.
Glycobiology 2003, 13, 93R.
6. (a) Yu, C.-Y.; Huang, M.-H. Org. Lett. 2006, 8, 3021; (b) Gurjar, M. K.; Borhade, R.
G.; Puranik, V. G.; Ramana, C. V. Tetrahedron Lett. 2006, 47, 6979; (c) Merino, P.;
Delso, I.; Tejero, T.; Cardona, F.; Goti, A. Synlett 2007, 2651; (d) Liu, C.; Gao, J.;
Yang, G.; Wightman, R. H.; Jiang, S. Lett. Org. Chem. 2007, 4, 556; (e) Merino, P.;
Delso, I.; Tejero, T.; Cardona, F.; Marradi, M.; Faggi, E.; Parmeggiani, C.; Goti, A.
Eur. J. Org. Chem. 2008, 2929; (f) Ribes, C.; Falomir, E.; Carda, M.; Marco, A. J. J.
Org. Chem. 2008, 73, 7779.
½ ꢀ
a 2D5 +40.4 (c 1, CH3OH); 1H NMR (300 MHz CDCl3 + CD3OD): d 7.13–7.03 (d,
2H, J = 8.4 Hz), 6.77–6.72(d, 2H, J = 8.3 Hz), 4.93–4.83 (br s, 1H), 4.34–3.98 (m,
1H), 3.77–3.34 (m, 4H), 2.90–2.72 (m, 1H), 1.41–1.38 (s, 9H); 13C NMR
(300 MHz CDCl3 + CD3OD): d 156.5, 156.3, 130.5, 128.4, 115.8, 80.0, 77.2, 66.8,
60.8, 60.2, 59.2, 28.3; FABMS: m/z 348 [M+Na]+; IR (KBr): cmꢁ1. 3345, 2925,
2854, 1689, 1614, 1514, 1368, 1248, 1167, 1043. Compound 8: pale yellow
sticky liquid; ½a D25
ꢀ
ꢁ15.8 (c 1, CHCl3); 1H NMR (300 MHz CDCl3): d 7.77–7.57 (d,
2H, J = 8.3 Hz), 7.41–6.99 (m, 9H), 6.99–6.74 (d, 2H, J = 8.3 Hz), 5.68–5.40 (br d,
1H), 4.87–4.60 (br s, 1H), 4.51–4.39 (s, 2H), 3.82–3.46 (m, 3H), 3.27–3.19 (d,
1H, J = 10.5 Hz), 3.03–2.77 (m, 1H), 2.47–2.41 (s, 3H), 1.46–1.37 (s, 9H); 13C
NMR (75 MHz, CDCl3):
d 154.9, 149.2, 144.9, 137.1, 236.5, 132.8, 129.7,
128.7,128.6, 128.4, 128.1, 127.9, 122.4, 77.4, 73.9, 68.4, 62.7, 61.2, 60.6, 28.4,
21.7; FABMS: m/z 592 [M+Na]+; IR (KBr): cmꢁ1; 3407, 2925, 2853, 1702, 1598,
1501, 1370, 1177, 1155, 866, 749. Compound 10: pale yellow liquid; ½a D25
ꢀ
ꢁ12.5 (c 1, CHCl3); 1H NMR (300 MHz CDCl3): d 7.69–7.65 (d, 2H, J = 8.12 Hz),
7.32–7.13 (m, 9H), 6.90–6.86 (d, 2H, J = 8.12 Hz), 5.79–5.72 (br d, 1H), 4.77–
4.70 (br s, 1H), 4.43–4.41 (s, 2H), 4.01–3.93 (m, 1H), 3.36–3.28 (m, 1H), 3.19–
3.10 (m, 1H), 2.45–2.42 (s, 3H), 1.41–1.37 (s, 9H); 13C NMR (75 MHz, CDCl3): d
155.2, 148.2, 144.9, 138.1, 137.2, 132.7, 129.6, 128.5, 127.9, 127.6, 122.2, 79.6,
76.9, 73.5, 71.0, 56.6, 28.4, 21.7; FABMS:m/z 550 [M+Na]+; IR (KBr): cmꢁ1
;
3409, 2923, 2853, 1700, 1598, 1501, 1370, 1198, 1177, 867,750; Compound 14:
Pale yellow oily liquid; ½a D25
ꢀ
ꢁ32.8 (c1, CHCl3); 1H NMR (300 MHz, CDCl3): d
7.71–7.67 (d, 2H, J = 8.3 Hz), 7.32–7.23 (m, 4H), 7.01–6.97 (d, 2H, J = 8.4 Hz),
4.52–4.48 (m, 1H), 3.77–3.46 (m, 3H), 2.47–2.44 (s, 3H); 13C NMR (75 MHz,
CDCl3): d 149.5, 145.4, 135.4, 132.7, 129.9, 129.2, 128.5, 122.2, 74.0, 66.1, 62.7,
21.8; FABMS: m/z 386 [M+Na]+; IR (KBr): cmꢁ1; 3360, 2921, 2851, 2105, 1598,
1502, 1373, 1198, 1178, 867.
7. (a) Liu, C.-Y. Hecheng Huaxue 2010, 18(4), 462; (b) Tsou, E.-L.; Chen, S.-Y.; Yang,
M.-H.; Wang, S.-C.; Cheng, T. R.; Rachel; Cheng, W.-C. Bioorg. Med. Chem. 2008,
16(24), 10198.