1768
T. Sengoku et al.
LETTER
(4) (a) Corey, E. J.; Nicolaou, K. C. J. Am. Chem. Soc. 1974, 96,
5614. (b) Corey, E. J.; Nicolaou, K. C.; Melvin, L. S. J. Am.
Chem. Soc. 1975, 97, 653.
Table 2 Pd(0)-Catalyzed Macrolactamization
Entry
Substrate
Yield (%)a
11c 0
a/gb
–
E/Zb
–
(5) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi,
1
2
3
4
5
8c
M. Bull. Chem. Soc. Jpn. 1979, 52, 1989.
(6) (a) Shiina, I.; Ibuka, R.; Kubota, M. Chem. Lett. 2002, 31,
286. (b) Shiina, I.; Kubota, M.; Ibuka, R. Tetrahedron Lett.
2002, 43, 7535.
(7) (a) Fraunhoffer, K. J.; Prabagaran, N.; Sirois, L. E.; White,
M. C. J. Am. Chem. Soc. 2006, 128, 9032. (b) Stang, E. M.;
White, M. C. Nat. Chem. 2009, 1, 547.
(8) Trost, B. M. Angew. Chem., Int. Ed. Engl. 1989, 28, 1173.
(9) (a) Liu, L.; Floreancig, P. E. Org. Lett. 2009, 11, 3152.
(b) Kim, S.; Adiyaman, Y.; Saha, G.; Powell, W. S.; Rokach,
J. Tetrahedron Lett. 2001, 42, 4445. (c) Nagano, H.; Tada,
A.; Isobe, Y.; Yajima, T. Synlett 2000, 1193. (d) Makado,
G.; Morimoto, T.; Sugimoto, Y.; Tsutsumi, K.; Kagawa, N.;
Kakiuchi, K. Adv. Synth. Catal. 2010, 352, 299. (e) He, W.;
Soll, C. E.; Chavadi, S. S.; Quadri, L. E. N. J. Am. Chem.
Soc. 2009, 131, 16744.
(10) We observed that the reaction with the isolated single (E)-a-
7c under the same reaction conditions afforded a 90:10
mixture of E/Z-isomers without production of g-7c
(Scheme 4).
9c
12c 68
13c 68
12d 67
12e 34
100:0
100:0
99:1
95:5
84:16
87:13
83:17
73:27
10c
9d
9e
a Isolated and combined yields.
b Ratios were determined by 1H NMR analysis (300 MHz, CDCl3).
approach is advantageous in that only easily removable al-
cohols and CO2 were formed as side products during the
course of the reactions. The success of this diverse and ef-
ficient macrocyclization could show broader applicability
of this methodology to the synthesis of macrocyclic natu-
ral products, and, in addition, represents the first example
of Pd-catalyzed macrolactamization to generate 13–15-
membered lactams.
O
O
O
O
Supporting Information for this article is available online at
Pd(PPh3)4 (20 mol%)
CH2Cl2 (2 mM)
r.t., 20 h
Acknowledgment
(E)-α-7c
(E,Z)-α-7c
(E/Z = 90:10)
(E/Z = 100:0)
This work was supported in part by a Grant-in-Aid for Scientific
Research from the Ministry of Education, Culture, Sports, Science
and Technology, Japan.
Scheme 4
(11) This would be attributed to the strain based on the ring size.
(12) Leonard, N. J.; Cruickshank, K. A. J. Org. Chem. 1985, 50,
2480.
(13) The macrolactamization of 9c in the absence of KOt-Bu
resulted in a-12c in 44% yield (Scheme 5).
References and Notes
(1) (a) Vester, B.; Douthwaite, S. Antimicrob. Agents
Chemother. 2001, 45, 1. (b) Schlunzen, F.; Zarivach, R.;
Harms, J.; Bashan, A.; Tocilj, A.; Albrecht, R.; Yonath, A.;
Franceschi, F. Nature (London) 2001, 413, 814. (c)Hansen,
J. L.; Ippolito, J. A.; Ban, N.; Nissen, P.; Moore, P. B.; Steitz,
T. A. Mol. Cells 2002, 10, 117.
O
NBoc
(2) (a) Gerth, K.; Bedorf, N.; Hofle, G.; Irschik, H.;
Reichenbach, H. J. Antibiot. 1996, 49, 560. (b) Hofle, G.;
Bedorf, N.; Steinmetz, H.; Schomburg, D.; Gerth, K.;
Reichenbach, H. Angew. Chem., Int. Ed. Engl. 1996, 35,
1567; Angew. Chem. 1996, 108, 1671.
(3) For recent reviews, see: (a) Parenty, A.; Moreau, X.;
Campagne, J.-M. Chem. Rev. 2006, 106, 911. (b) Yeung,
K.-S.; Paterson, I. Chem. Rev. 2005, 105, 4237.
Pd(PPh3)4 (20 mol%)
CONHBoc
THF (2 mM)
reflux, 7 h
OCO2Et
9c
α-12c
(44%, E/Z = 85:15)
Scheme 5
Synlett 2011, No. 12, 1766–1768 © Thieme Stuttgart · New York