Organometallics
COMMUNICATION
groups suggests an interaction of HSiEt3 with 2 (at elevated
temperatures) analogous to other Lewis acid-catalyzed systems.5c
These findings are corroborated by deuterium labeling studies,
which show the statistical H/D redistribution between DSiEt3 and
H2SiPh2 in the presence of catalytic amounts of 2 (eq 1). Un-
doubtedly, additional studies are required for the conclusive me-
chanistic elucidation of these Al-catalyzed hydrosilylation reactions.
5644. For copper, silver, and gold catalysts see: (e) Lipshutz, B. H.;
Noson, K.; Chrisman, W.; Lower, A. J. Am. Chem. Soc. 2003,
125, 8779–8789. (f) Diez-Gonzalez, S.; Nolan, S. P. Acc. Chem. Res.
2008, 41, 349–358. For zinc catalysts see: (g) Mimoun, H.; de Laumer,
J. Y.; Giannini, L.; Scopelliti, R.; Floriani, C. J. Am. Chem. Soc. 1999,
121, 6158–6166. For iridium catalysts see: (h) Park, S.; Brookhart, M.
Organometallics 2010, 29, 6057–6064. For rhenium catalysts see: (i)
Nolin, K. A.; Krumper, J. R.; Pluth, M. D.; Bergman, R. G.; Toste, F. D.
J. Am. Chem. Soc. 2007, 129, 14684–14696.
(3) (a) Plietker, B. Iron Catalysis in Organic Chemistry: Reactions and
Applications; Wiley-VHC: New York, 2008. (b) Morris, R. H. Chem. Soc.
Rev. 2009, 38, 2282–2291. (c) Gaillard, S.; Renaud, J.-L. ChemSusChem
2008, 1, 505–509. (d) Nishiyama, H.; Furuta, A. Chem. Commun.
2007, 760–762. (e) Inagaki, T.; Phong, L. T.; Furuta, A.; Ito, J.-i.;
Nishiyama, H. Chem.—Eur. J. 2010,16, 3090–3096. (f) Shaikh, N. S.; Enthaler, S.;
Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2008, 47, 2497–2501. (g) Bart, S. C.;
Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2004,126, 13794–13807. (h) Archer,
A. M.; Bouwkamp, M. W.; Cortez, M.-P.; Lobkovsky, E.; Chirik, P. J. Organo-
metallics 2006, 25, 4269–4278. (i) Tondreau, A. M.; Lobkovsky, E.; Chirik, P. J.
Org. Lett. 2008, 10, 2789–2792. (j) Tondreau, A. M.; Darmon, J. M.; Wile, B. M.;
Floyd, S. K.; Lobkovsky, E.; Chirik, P. J. Organometallics 2009, 28, 3928–3940.
(k) Hosokawa, S.; Ito, J.-i.; Nishiyama, H. Organometallics 2010, 29, 5773–5775.
(4) Yang, J.; Tilley, T. D. Angew. Chem., Int. Ed. 2010, 49, 10186–10188.
(5) (a) Piers, W. E.; Marwitz, A. J. V.; Mercier, L. G. Inorg. Chem.
2011, Article ASAP, DOI: 10.1021/ic2006474. (b) Blackwell, J. M.;
Morrison, D. J.; Piers, W. E. Tetrahedron 2002, 58, 8247–8254. (c) Parks,
D. J.; Blackwell, J. M.; Piers, W. E. J. Org. Chem. 2000, 65, 3090–3098.
(d) Bach, P.; Albright, A.; Laali, K. K. Eur. J. Org. Chem. 2009, 1961–1966.
(e) Piers, W. E.; Chivers, T. Chem. Soc. Rev. 1997, 26, 345–354. (f) Parks,
D. J.; Piers, W. E. J. Am. Chem. Soc. 1996, 118, 9440–9441.
DSiEt3 þ H2SiPh2 2 ð1 mol %Þ HSiEt þ H D2ꢀxSiPh2 ð1Þ
F
R
3
x
100 °C
CDCl
3
In conclusion, cationic Al alkyl complexes supported by
scorpionate ligands have been prepared and structurally char-
acterized. Crystallographic analysis revealed the versatility of the
Tp* ligand as well as a change in coordination geometry upon
formation of the cationic complexes. Compound 2 is active
toward the hydrosilylation of a variety of substrates, including
ketones, aldehydes, imines, and even electronically unfavorable
lactones, highlighting the curiously gentle yet highly active character
of the cationic Al complex. Such catalysts may thus provide a cheap
and effective alternative for expensive late transition metal species in
addition to a remarkably broad substrate scope.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental details, X-ray
b
crystallographic data (CIF), and additional characterization data.
This material is available free of charge via the Internet at http://
pubs.acs.org.
(6) (a) Asao, N.; Sudo, T.; Yamamoto, Y. J. Org. Chem. 1996,
61, 7654–7655. (b) Nagahara, S.; Yamakawa, T.; Yamamoto, H. Tetra-
hedron Lett. 2001, 42, 5057–5060. (c) Song, Y.-S.; Yoo, B. R.; Lee, G.-H.;
Jung, I. N. Organometallics 1999, 18, 3109–3115.
’ AUTHOR INFORMATION
(7) (a) Han, R.; Looney, A.; Parkin, G. J. Am. Chem. Soc. 1989, 111,
7276–7278. (b) Looney, A.; Parkin, G. Polyhedron 1990, 9, 265–276.
(8) (a) Milione, S.; Grisi, F.; Centore, R.; Tuzi, A. Organometallics 2006,
25, 266–274. (b) Otero, A.; Lara-Sanchez, A.; Fernandez-Baeza, J.; Alonso-
Moreno, C.; Castro-Osma, J. A.; Marquez-Segovia, I.; Sanchez-Barba, L. F.;
Rodriguez, A. M.; Garcia-Martinez, J. C. Organometallics 2011, 30, 1507–1522.
(9) Chen, E. Y.-X.; Marks, T. J. Chem. Rev. 2000, 100, 1391–1434.
(10) Complex 1 is not active toward the hydrosilylation of 3-methyl-
butan-2-one (1.0 M in CDCl3) using conditions similar to those described in
Table 2 (1.0 mol % 1, 1.1 equiv HSiEt3, 100 °C, 60 min, 0% conversion).
(11) Hon, Y.-S.; Chang, C.-P.; Wong, Y.-C. Tetrahedron Lett. 2004,
45, 3313–3315.
(12) Appel, R.; Mayr, H. J. Am. Chem. Soc. 2011, 133, 8240–8251.
(13) (a) Chatani, N.; Ikeda, S.; Ohe, K.; Murai, S. J. Am. Chem. Soc.
1992, 114, 9710–9711. (b) Dias, E. L.; Brookhart, M.; White, P. S. J. Am.
Chem. Soc. 2001, 123, 2442–2443. (c) Aggarwal, V. K.; Sheldon, C. G.;
Macdonald, G. J.; Martin, W. P. J. Am. Chem. Soc. 2002, 124,
10300–10301. (d) Kownacki, I.; Marciniec, B.; Szubert, K.; Kubicki,
M. Organometallics 2005, 24, 6179–6183. (e) Tsubouchi, A.; Onishi, K.;
Takeda, T. J. Am. Chem. Soc. 2006, 128, 14268–14269. (f) Gao, R.; Yi,
C. S. ACS Catal. 2011, 1, 544–547.
Corresponding Author
*Tel: +1-510-642-2156. Fax: +1-510-642-7714. E-mail: rbergman@
cchem.berkeley.edu.
’ DEDICATION
This paper is dedicated to the memory of Prof. Gordon Stone,
with gratitude for the immense impact that his scientific con-
tributions have made to the field of organometallic chemistry.
’ ACKNOWLEDGMENT
This material is based upon work supported as part of the
Center for Catalytic Hydrocarbon Functionalization, an Energy
Frontier Research Center funded by the U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences, under
Award Number DE-SC0001298.
’ REFERENCES
(14) (a) Darensbourg, D. J.; Karroonnirun, O. Organometallics 2010,
29, 5627–5634. (b) Shen, M.; Huang, W.; Zhang, W.; Hao, X.; Sun,
W.-H.; Redshaw, C. Dalton Trans. 2010, 39, 9912–9922. (c) Schwarz,
A. D.; Chu, Z.; Mountford, P. Organometallics 2010, 29, 1246–1260. (d)
Ajellal, N.; Carpentier, J.-F.; Guillaume, C.; Guillaume, S. M.; Helou, M.;
Poirier, V.; Sarazin, Y.; Trifonov, A. Dalton Trans. 2010, 39, 8363–8376.
(e) Koller, J.; Bergman, R. G. Organometallics 2011, 30, 3217–3224.
(15) (a) Tanner, D. D.; Diaz, G. E.; Potter, A. J. Org. Chem. 1985, 50,
2149–2154. (b) Yang, D.; Tanner, D. D. J. Org. Chem. 1986, 51, 2267–2270.
(c) Ito, H.; Yamanaka, H.; Ishizuka, T.; Tateiwa, J.-i.; Hosomi, A. Synlett
2000, 4, 479–482.
(1) (a) Marciniec, B.; Gulinski, J. J. Organomet. Chem. 1993,
446, 15–23. (b) Carpentier, J.-F.; Bette, V. Curr. Org. Chem. 2002,
6, 913–936. (c) Riant, O.; Mostefai, N.; Courmarcel, J. Synthesis
2004, 2943–2958. (d) Rappoport, Z. Z.; Yitzhak, A. The Chemistry of
Organic Silicon Compounds; Wiley: New York, 2001; Vol. 3. (e) Marciniec, B.
Hydrosilylation: A Comprehensive Review on Recent Advances; Springer:
The Netherlands, 2010.
(2) For examples of hydrosilylation with nickel catalysts see: (a)
Tran, B. L.; Pink, M.; Mindiola, D. J. Organometallics 2009,
28, 2234–2243. (b) Chakraborty, S.; Krause, J. A.; Guan, H. Organome-
tallics 2009, 28, 582–586. (c) Fontaine, F.-G.; Nguyen, R.-V.; Zargarian,
D. Can. J. Chem. 2003, 81, 1299–1306. For titanium catalysts
see: (d) Yun, J.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 5640–
2533
dx.doi.org/10.1021/om2008277 |Organometallics 2012, 31, 2530–2533