Scheme 4 Synthesis of 1. Reagents and conditions: (a) 3, NIS/TfOH, Et2O, ꢀ35 1C to ꢀ10 1C, 70%; (b) N2H4ꢁH2O, AcOH/pyridine, DCM, 94%;
(c) 6, TMSOTf, DCM, 4 A MS, ꢀ35 1C to ꢀ7 1C; (d) NEt3, DCM, rt, 38% over 2 steps; (e) 7, TMSOTf, DCM, 4 A MS, ꢀ30 1C to ꢀ15 1C, 81%;
(f) NaOMe, THF/MeOH, 50 1C; (g) H2, 10% Pd/C, MeOH, H2O, AcOH, 61% over 2 steps.
efficiency. Use of thioglycoside 4 and N-phenyl trifluoroacetimidate
Notes and references
5 resulted in the formation of only traces of the desired product.
1 F. C. Knoop, M. Owens and I. C. Crocker, Clin. Microbiol. Rev.,
However, glycosyl phosphate 6 proved to be a superior
1993, 6, 251.
glycosylating agent for the synthesis of 23, although purification
was achieved only following Fmoc cleavage to yield 24. Finally,
conversion of diol 24 to fully protected pentasaccharide 25 was
achieved by a single bis-glycosylation using rhamnosyl-imidate
7 in the presence of TMSOTf to add both rhamnose residues.
Final deprotection of 25 required two transformations:
saponification of the benzoate esters and catalytic hydrogenation
of the aromatic groups gave pentasaccharide 1.
2 (a) A. C. A. Clements, R. J. S. Magalhaes, A. J. Tatem,
D. L. Paterson and T. V. Riley, Lancet Infect. Dis., 2010, 10, 395;
(b) S. T. Cartman, J. T. Heap, S. A. Kuehne, A. Cockayne and
N. P. Minton, Int. J. Med. Microbiol., 2010, 300, 387.
3 (a) S. S. Ghantoji, K. Sail, D. R. Lairson, H. L. DuPont and
K. W. Garey, J. Hosp. Infect., 2010, 74, 309; (b) Erik R. M.
D. Dubberke and Albert I. P. Wertheimer, Infect. Control Hosp.
Epidemiol., 2009, 30, 57; (c) L. Kyne, M. Hamel, R. Polavaram and
C. Kelly, Clin. Infect. Dis., 2002, 34, 346.
4 B. Y. Lee, M. J. Popovich, Y. Tian, R. R. Bailey, P. J. Ufberg,
A. E. Wiringa and R. R. Muder, Vaccine, 2010, 28, 5245.
5 C. Snapper and J. Mond, J. Immunol., 1996, 157, 2229.
6 J. Ganeshapillai, E. Vinogradov, J. Rousseau, J. S. Weese and
M. A. Monteiro, Carbohydr. Res., 2008, 343, 703.
Comparison of NMR data of synthetic pentasaccharide
1 and native PS-I6 showed overall good agreement, chemical
shifts of signals corresponding to residues B, C and D were
nearly identical with those reported. Deviations were observed
for terminal sugars A and D0 due to the phosphate linkages at
C-1 of A and C-4 of D0 in the native repeating units that were
not present in the synthetic structure (see ESI for more
detailw).
7 (a) M. A. Oberli, M.-L. Hecht, P. Bindschadler, A. Adibekian,
¨
T. Adam and P. H. Seeberger, Chem. Biol., 2011, 18, 580;
(b) E. Danieli, L. Lay, D. Proietti, F. Berti, P. Costantino and
R. Adamo, Org. Lett., 2010, 13, 378.
8 (a) J.-G. Delcros, S. Tomasi, S. Carrington, B. Martin, J. Renault,
I. S. Blagbrough and P. Uriac, J. Med. Chem., 2002, 45, 5098;
(b) S. J. Danishefsky, S. Hu, P. F. Cirillo, M. Eckhardt and
P. H. Seeberger, Chem.–Eur. J., 1997, 3, 1617.
In summary, the first synthesis of the C. difficile cell-surface
PS-I pentasaccharide repeating unit 1 was achieved employing
9 J. Xia, S. A. Abbas, R. D. Locke, C. F. Piskorz, J. L. Alderfer and
K. L. Matta, Tetrahedron Lett., 2000, 41, 169.
a
linear strategy based on six building blocks 2–7.
10 (a) J. S. S. Rountree and P. V. Murphy, Org. Lett., 2009, 11, 871;
(b) K. C. Nicolaou, N. Winssinger, J. Pastor and F. DeRoose,
Glycosyl phosphate 6 proved to be a significantly better
glycosylating agent than identically protected thioglycoside
4 or glycosyl imidate 5. The terminal amine linker serves
as an attachment point for immobilization to microarray
surfaces, or for conjugation to carrier proteins. Immunization
analysis of synthetic oligosaccharide glycoconjugates is
currently underway.
´
J. Am. Chem. Soc., 1997, 119, 449; (c) G. Zemplen and A. Kunz,
Chem. Ber., 1923, 56, 1705.
11 M. Collot, J. Savreux and J.-M. Mallet, Tetrahedron, 2008,
64, 1523.
12 D. B. Werz, A. Adibekian and P. H. Seeberger, Eur. J. Org. Chem.,
2007, 12, 1976.
13 B. Yu and H. Tao, Tetrahedron Lett., 2001, 42, 2405.
c
10262 Chem. Commun., 2011, 47, 10260–10262
This journal is The Royal Society of Chemistry 2011