Organic Process Research & Development 2006, 10, 251−256
(2-Acetoxyphenoxy)ethyl (APOE) as a Phosphate Protecting Group in
Solid-Phase Synthesis of Oligonucleotides via the Phosphoramidite Approach
Zacharia S. Cheruvallath, Alessandra Eleuteri, Brett Turney, and Vasulinga T. Ravikumar*
Isis Pharmaceuticals, Inc., 2282 Faraday AVenue, Carlsbad, California 92008, U.S.A.
Abstract:
addition of acrylonitrile formed by â-elimination of cyano-
ethyl group to nucleobases. The potent DNA alkylating
properties of acrylonitrile have been investigated by many
laboratories.4 In addition, storage of solutions of cyanoethyl-
protected phosphoramidites for extended periods of time
undergo an Arbuzov-type of rearrangement leading to
depletion of the desired concentration. Even though methods
have been taken to circumvent the DNA-alkylation issue, it
is desirable to have a phosphate protecting group which will
not have such side reactions. Several phosphate protecting
groups have been reported by many laboratories in the last
several years.5 Still there is a need to develop a group that
will meet all of the requirements of a good phosphate
protecting group, viz. stability and compatibility with various
reagents, scalability, absence of side reactions, low cost, and
versatility. Here we report (2-acetoxyphenoxy)ethyl (APOE)
as an alternative to the 2-cyanoethyl group for the efficient
synthesis of oligonucleotides.
The (2-acetoxyphenoxy)ethyl (APOE) group could be an alter-
native to the conventional 2-cyanoethyl group for phosphate
protection in solid-phase oligonucleotide synthesis to circumvent
DNA alkylation by acrylonitrile generated under basic condi-
tion. This group is stable during oligonucleotide synthesis and
can be removed under mild conditions using aqueous am-
monium hydroxide. Multiple phosphorothioate oligodeoxy-
ribonucleotides and 2′-O-methoxyethyl-modified oligoribo-
nucleotide chimera were synthesized and characterized exten-
sively. The deprotection of this group follows an intramolecular
attack on the r-carbon adjacent to phosphate oxygen to liberate
the oligonucleotide and an innocuous cyclic ether as side
product. No modification of nucleobases was observed during
deprotection of this group.
Introduction
With the advent of 2-cyanoethyl-protected nucleoside
phosphoramidites,1 rapid and highly efficient solid-phase
syntheses of oligodeoxyribonucleotides and their analogues
are now available and have, in the past two decades,
revolutionized the therapeutic field as shown by numerous
drugs being evaluated in the clinic.2 Synthetic scales range
from nanomole to almost a mole, and currently it takes less
than 8 h to synthesize a phosphorothioate oligonucleotide
of 20-mer in length at 750 mmol scale on GE Amersham
OligoProcess synthesizer. Synthesis involves monomeric
building blocks containing a 2-cyanoethyl group for phos-
phate protection. This group is eventually removed using an
amine or other conditions.3 Care must be taken to avoid
(4) (a) Wilk, A.; Grajkowski, A.; Phillips, L. R.; Beaucage, S. L. J. Org. Chem.
1999, 64, 7515-7522. (b) Wilk, A.; Grajkowski, A.; Srinivasachar, K.;
Beaucage, S. L. Antisense Nucleic Acid Drug DeV. 1999, 9, 361-366. (c)
Crippa, S.; Di Gennaro, P.; Lucini, R.; Orlandi, M.; Rindone, B. Gazz. Chim.
Ital. 1998, 123, 197-203. (d) Prokopczyk, B.; Bertinato, P.; Hoffman, D.
Carcinogenesis 1988, 9, 2125-2128. (e) Mag, M.; Engels, J. W. Nucleic
Acids Res. 1988, 16, 3525-3543. (f) Chambers, R. W. Biochemistry 1965,
4, 219-226.
(5) Phosphate protecting groups: 3-(2-pyridyl)-1-propyl and 2-[N-methyl-N-
(2-methyl)]aminoethyl: Cleslak, J.; Beaucage, S. L. J. Org. Chem. 2003,
68, 10123-10129. 3-(N-tert-Butylcarboxamido)-1-propyl: Wilk, A.;
Chmielewski, M. K.; Grajkowski, A.; Phillips, L. R.; Beaucage, S. L. J.
Org. Chem. 2002, 67, 6430-6438. 4-[N-Methyl-N-(2,2,2-trifluoroacetyl)-
amino]butyl: Wilk, A.; Grajkowski, A.; Phillips, L. R.; Beaucage, S. L. J.
Org. Chem. 1999, 64, 7515-7522. 4-Cyano-2-butenyl: Ravikumar, V. T.;
Cheruvallath, Z. S.; Cole, D. L. Tetrahedron Lett. 1996, 37, 6643-6646.
Allyl: (a) Hayakawa, Y.; Uchiyama, M.; Kato, H.; Noyori, R. Tetrahedron
Lett. 1985, 26, 6505-6508. (b) Hayakawa, Y.; Kato, H.; Uchiyama, M.;
Kajino, H.; Noyori, R. J. Org. Chem. 1986, 51, 2400-2402. (c) Hayakawa,
Y.; Kato, H.; Nobori, T.; Noyori, R.; Imai, J. Nucleic Acids Res. Ser. 1986,
17, 97-100. (d) Hayakawa, Y.; Wakabayashi, S.; Kato, H.; Noyori, R. J.
Am. Chem. Soc. 1990, 112, 1691-1696. (e) Hayakawa, Y.; Hirose, M.;
Noyori, R. J. Org. Chem. 1993, 58, 5551-5555. (f) Hayakawa, Y.; Hirose,
M.; Noyori, R. Nucleosides Nucleotides 1994, 13, 1337-1345. (g) Berg-
mann, F.; Kueng, E.; Laiza, P.; Bannwarth, W. Tetrahedron Lett. 1995, 51,
6971-6976. 2-(Trimethylsilyl)ethyl: Wada, T.; Sekine, M. Tetrahedron Lett.
1994, 35, 757-760. (2-Diphenylmethylsilyl)ethyl: (a) Ravikumar, V. T.;
Sasmor, H.; Cole, D. L. Bioorg. Med. Chem. Lett. 1993, 3, 2637-2640.
(b) Ravikumar, V. T.; Wyrzykiewicz, T. K.; Cole, D. L. Tetrahedron 1994,
50, 9255-9266. (c) Ravikumar, V. T.; Cole, D. L. Gene 1994, 149, 157-
161. (d) Krotz, A. H.; Cole, D. L.; Ravikumar, V. T. Tetrahedron Lett.
1996, 37, 1999-2002. (e) Krotz, A. H.; Wheeler, P.; Ravikumar, V. T.
Angew. Chem., Int. Ed. Engl. 1995, 34, 2406-2409. (f) Krotz, A. H.;
Cheruvallath, Z. S.; Cole, D. L.; Ravikumar, V. T. Nucleosides Nucleotides
1998, 17, 2335-2338. 2,2,2-Trichloro-1,1-dimethylethyl: (a) Letsinger, R.
L.; Groody, E. P.; Tanaka, T. J. Am. Chem. Soc. 1982, 104, 6805-6806.
(b) Letsinger, R. L.; Groody, E. P.; Lander, N.; Tanaka, T. Tetrahedron
1984, 40, 137-143. p-Nitrophenylethyl: (a) Schwarz, M. W.; Pfleiderer,
W. Tetrahedron Lett. 1984, 25, 5513-5516. (b) Himmelsbach, F.; Schulz,
B. S.; Trichtinger, T.; Charubala, R.; Pfleiderer, W. Tetrahedron 1984, 40,
59-72. (c) Schwarz, M. W.; Pfleiderer, W. Nucleosides Nucleotides 1985,
4, 291-292. (d) Hamamoto, S.; Takaku, H. Chem. Lett. 1986, 1401-1404.
* To whom correspondence should be addressed. Telephone: (760) 603-
(1) (a) Beaucage, S. L.; Caruthers, M. H. Tetrahedron Lett. 1981, 22, 1859-
1862. (b) McBridge, L. J.; Caruthers, M. H. Tetrahedron Lett. 1983, 24,
245-248. (c) Sinha, N. D.; Biemat, J.; Koster, H. Tetrahedron Lett. 1983,
24, 5843-5846. (d) Sinha, N. D.; Biemat, J.; McManus, J.; Koster, H.
Nucleic Acids Res. 1984, 12, 4539-4557. (e) Gasparutto, D.; Molko, D.;
Teoule, R. Nucleosides Nucleotides 1990, 9, 1087-1098. (f) Lyttle, M. H.;
Wright, P. B.; Sinha, N. D.; Bain, J. D.; Chamberlin, A. R. J. Org. Chem.
1991, 56, 4608-4615. (g) Beaucage, S. L.; Caruthers, M. H. In Current
Protocols in Nucleic Acid Chemistry; Beaucage, S. L., Bergstrom, D. E.,
Glick, G. D., Jones, R. A., Eds.; John Wiley & Sons: New York, 1999; pp
3.3.1-3.3.20.
(2) A number of second-generation phosphorothioate oligonucleotides are in
various stages of preclinical and clinical trials against ApoB-100, PTP-1B,
VLA4, TRPM2, survivin, STAT-3, eIF-4E, etc. for the treatment of a variety
of diseases such as cancer, psoriasis, diabetes, asthma, arthritis, multiple
tion.
(3) (a) Capaldi, D. C.; Gaus, H.; Krotz, A. H.; Arnold, J.; Carty, R. L.; Moore,
M. N.; Scozzari, A. N.; Lowery, K.; Cole, D. L.; Ravikumar, V. T. Org.
Process Res. DeV. 2003, 7, 832-838. (b) Umemoto, T.; Wada, T.
Tetahedron Lett. 2005, 46, 4251-4253.
10.1021/op0502147 CCC: $33.50 © 2006 American Chemical Society
Published on Web 01/31/2006
Vol. 10, No. 2, 2006 / Organic Process Research & Development
•
251