4 D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson,
B. F. Chmelka and G. D. Stucky, Science, 1998, 279, 548–552.
5 S. Y. Liu and S. P. Armes, Angew. Chem., Int. Ed., 2002, 41,
1413–1416.
6 J. G. Li, T. Wang, D. L. Wu, X. Q. Zhang, J. T. Yan, S. Du,
Y. F. Guo, J. T. Wang and A. Zhang, Biomacromolecules, 2008, 9,
2670–2676.
7 R. Wang, N. Xu, F.-S. Du and Z.-C. Li, Chem. Commun., 2010, 46,
3902–3904.
8 E. R. Gillies, T. B. Jonsson and J. M. J. Frechet, J. Am. Chem.
´
Soc., 2004, 126, 11936–11943.
9 D. E. Discher and A. Eisenberg, Science, 2002, 297, 967–973.
10 G. Riess, Prog. Polym. Sci., 2003, 28, 1107–1170.
11 H. A. Klok and S. Lecommandoux, Adv. Mater., 2001, 13,
1217–1229.
12 S. Steig, F. Cornelius, P. Witte, B. B. P. Staal, C. E. Koning,
A. Heise and H. Menzel, Chem. Commun., 2005, 5420–5422.
13 H. R. Marsden, J. W. Handgraaf, F. Nudelman, N. Sommerdijk
and A. Kros, J. Am. Chem. Soc., 2010, 132, 2370–2377.
14 H. Tang, Y. Li, S. H. Lahasky, S. S. Sheiko and D. Zhang,
Macromolecules, 2011, 44, 1491–1499.
Scheme 3 Structures of the Grubbs-catalyst (1), CTA (2), and the
scheme of the synthesis of polypeptide-b-poly(oxa)norbornene diblock
polymers. Py = pyridine; Bn = benzyl; Mes = 2,4,6-trimethylphenyl.
15 S. A. Riboldi, M. Sampaolesi, P. Neuenschwander, G. Cossu and
S. Mantero, Biomaterials, 2005, 26, 4606–4615.
16 A.-V. Ruzette and L. Leibler, Nat. Mater., 2005, 4, 19–31.
17 A. V. Kabanov, E. V. Batrakova and V. Y. Alakhov, J. Controlled
Release, 2002, 82, 189–212.
18 B. Jeong, Y. H. Bae, D. S. Lee and S. W. Kim, Nature, 1997, 388,
860–862.
19 R. Duncan, Nat. Rev. Drug Discovery, 2003, 2, 347–360.
20 A. Rosler, G. W. M. Vandermeulen and H. A. Klok, Adv. Drug
Delivery Rev., 2001, 53, 95–108.
21 M. Metzke, N. O’Connor, S. Maiti, E. Nelson and Z. Guan,
Angew. Chem., Int. Ed., 2005, 44, 6529–6533.
22 I. Dimitrov and H. Schlaad, Chem. Commun., 2003, 2944–2945.
23 S. Hilf, R. H. Grubbs and A. F. M. Kilbinger, J. Am. Chem. Soc.,
2008, 130, 11040–11048.
(Step 10, Scheme 3). 2 was added to the solution after the
initiation was complete (Step 20, Scheme 3). The olefin cross-
metathesis only occurred at the chain-propagation end as the
benzylidene terminus on the other end was too sterically
hindered to compete for such a chain transfer reaction.25,41
Mono-(N-TMS amine) functionalized ROMP polymer was
obtained (S50, Scheme 3). After the excess 2 was removed, the
ROMP polymer was used for the ROP of NCAs to give
the polynorbornene-b-polypeptide diblock copolymers (S60,
Scheme 3). All the diblock polymers synthesized had well-
controlled molecular weights and low PDIs (P17–P18,
Table S1, see ESIw).
24 M. K. Mahanthappa, F. S. Bates and M. A. Hillmyer,
Macromolecules, 2005, 38, 7890–7894.
25 J. B. Matson and R. H. Grubbs, Macromolecules, 2008, 41,
5626–5631.
26 T. Morita, B. R. Maughon, C. W. Bielawski and R. H. Grubbs,
Macromolecules, 2000, 33, 6621–6623.
27 O. A. Scherman, I. M. Rutenberg and R. H. Grubbs, J. Am.
Chem. Soc., 2003, 125, 8515–8522.
28 N. Hadjichristidis, H. Iatrou, M. Pitsikalis and G. Sakellariou,
Chem. Rev., 2009, 109, 5528–5578.
29 H. Lu and J. Cheng, J. Am. Chem. Soc., 2007, 129, 14114–14115.
In summary, we developed a novel strategy for the
facile synthesis of polypeptide-b-poly(oxa)norbornene-b-poly-
peptide triblock and polynorbornene-b-polypeptide diblock
copolymers. By using a symmetrical CTA 2 for ROMP,
mono-(N-TMS amine) and N,N0-bis(TMS)diamine terminally
functionalized ROMP polymers were generated and utilized
to initiate the controlled ROP of NCAs to yield the desired,
well-defined hybrid block copolymers. We are currently
exploring the properties, self-assembly and biomedical appli-
cations of these novel materials.
30 W. Vayaboury, O. Giani, H. Cottet, A. Deratani and F. Schue
´
,
Macromol. Rapid Commun., 2004, 25, 1221–1224.
31 T. M. Trnka and R. H. Grubbs, Acc. Chem. Res., 2000, 34, 18–29.
32 T.-L. Choi and R. H. Grubbs, Angew. Chem., Int. Ed., 2003, 42,
1743–1746.
33 J. A. Love, J. P. Morgan, T. M. Trnka and R. H. Grubbs,
Angew. Chem., Int. Ed., 2002, 41, 4035–4037.
34 H. Lu, J. Wang, Y. Lin and J. Cheng, J. Am. Chem. Soc., 2009,
131, 13582–13583.
35 H. Lu and J. Cheng, J. Am. Chem. Soc., 2008, 130, 12562–12563.
36 H. Lu, J. Wang, Y. Bai, J. W. Lang, S. Liu, Y. Lin and J. Cheng,
Nat. Commun., 2011, 2, 206.
We thank the US NSF (CHE-0809420), the US NIH
(Director’s New Innovator Award 1DP2OD007246-01 and
1R21EB009486-01), and the Centre of Nanoscale Science
and Technology at the University of Illinois at Urbana–
Champaign for funding support. We also thank Dr John B.
Matson for the helpful discussion and suggestions.
37 S. Hilf and A. F. M. Kilbinger, Nat. Chem., 2009, 1, 537–546.
38 C. W. Bielawski, D. Benitez, T. Morita and R. H. Grubbs,
Macromolecules, 2001, 34, 8610–8618.
39 M. A. Hillmyer, S. T. Nguyen and R. H. Grubbs, Macromolecules,
1997, 30, 718–721.
Notes and references
1 A. Lendlein and S. Kelch, Angew. Chem., Int. Ed., 2002, 41,
2034–2057.
2 M. Goswami, B. G. Sumpter, T. Huang, J. M. Messman,
S. P. Gido, A. I. Isaacs-Sodeye and J. W. Mays, Soft Matter,
2010, 6, 6146–6154.
40 R. M. Owen, J. E. Gestwicki, T. Young and L. L. Kiessling,
Org. Lett., 2002, 4, 2293–2296.
41 A. K. Chatterjee, T.-L. Choi, D. P. Sanders and R. H. Grubbs,
J. Am. Chem. Soc., 2003, 125, 11360–11370.
3 S. Klingelhofer, W. Heitz, A. Greiner, S. Oestreich, S. Forster and
¨
M. Antonietti, J. Am. Chem. Soc., 1997, 119, 10116–10120.
¨
c
10832 Chem. Commun., 2011, 47, 10830–10832
This journal is The Royal Society of Chemistry 2011