R. Pandey et al. / Inorganica Chimica Acta 376 (2011) 195–206
205
article can be found, in the online version, at doi:10.1016/
References
[1] P. Przychodzén, T. Korzeniak, R. Podgajny, B. Sieklucka, Coord. Chem. Rev. 250
(2006) 2234.
[2] A. Beghidja, P. Rabu, G. Rogez, R. Welter, Chem. Eur. J. 12 (2006) 7627.
[3] R. Wang, J. Zhang, L. Li, Inorg. Chem. 48 (2009) 7194.
[4] R. Fu, S. Xiang, S. Hu, L. Wang, Y. Li, X. Huang, X. Wu, Chem. Commun. 42
(2005) 5292.
[5] W. Yang, X. Lin, A.J. Blake, C. Wilson, P. Hubberstey, N.R. Champness, M.
Schröder, Inorg. Chem. 48 (2009) 11067.
[6] Takamizawa, T. Saito, T. Akatsuka, E.-I. Nakata, Inorg. Chem. 44 (2005) 1421.
[7] J.S. Seo, D. Whang, H. Lee, S.I. Jun, J. Oh, Y.J. Jeon, K. Kim, Nature 404 (2000) 982.
[8] O. Hallale, S.A. Bourne, K.R. Koch, New J. Chem. 29 (2005) 1416.
[9] D. Bradshaw, J.B. Claridge, E.J. Cussen, T.J. Prior, M.J. Rosseinsky, Acc. Chem.
Res. 38 (2005) 273.
Fig. 9. Fluorescence spectra of H3BCCB (kex 325, kem, 445 nm) and 5 (kex 325, kem,
441nm) in water at rt.
[10] S. Kitagawa, K. Uemura, Chem. Soc. Rev. 34 (2005) 109.
[11] K. Uemura, S. Kitagawa, K. Fukui, K. Saito, J. Am. Chem. Soc. 126 (2004) 3817
(and references therein).
[12] A.N. Khlobystov, A.J. Blake, N.R. Champness, D.A. Lemenovskii, A.G. Majouga,
N.V. Zyk, M. Schröder, Coord. Chem. Rev. 222 (2001) 155.
[13] M. Eddaoudi, D.B. Moler, H. Li, B. Chen, T.M. Reineke, M. O’Keeffe, O.M. Yaghi,
Acc. Chem. Res. 34 (2001) 319.
[14] G.R. Desiraju, Angew. Chem., Int. Ed. 34 (1995) 2311.
[15] R. Kitaura, S. Kitagawa, Y. Kubota, T.C. Kobayashi, K. Kindo, Y. Mita, A. Matsuo,
M. Kobayashi, H.C. Chang, T.C. Ozawa, M. Suzuki, M. Sakata, M. Takata, Science
298 (2002) 2358.
[16] R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, R.V. Belosludov, T.C. Kobayashi,
H. Sakamoto, T. Chiba, M. Takata, Y. Kawazoe, Y. Mita, Nature 436 (2005) 238.
[17] B.-C. Tzeng, T.-H. Chiu, B.-S. Chen, G.-H. Lee, Chem.-Eur. J. 14 (2008) 5237.
[18] R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’Keeffe, O.M. Yaghi,
Science 319 (2008) 939.
4. Conclusions
In summary, through this work we have successfully synthe-
sized four novel coordination polymers using a new aminocarbox-
ylate ligand H3CCB and four mononuclear complexes based on
H3BCCB. Spectral and structural studies suggested that the synthe-
sis of a variety of coordination polymers can be achieved in the
same solvent under analogous reaction conditions. Further, it has
been demonstrated that in 1 and 2 the metal centers are bridged
by HCCB2ꢁ to form a rigid double stranded 1D chain. In these sys-
tems the O–Hꢀ ꢀ ꢀO hydrogen bonding, C–Hꢀ ꢀ ꢀ
p
and
p p interac-
ꢀ ꢀ ꢀ
[19] T.K. Prasad, M.V. Rajasekharan, Cryst. Growth Des. 8 (2008) 1346.
[20] A.A. Mohamed, A.P. Mayer, H.E. Abdou, M.D. Irwin, L.M. Perez, J.P. Fackler,
Inorg. Chem. 46 (2007) 11165.
tions construct 2D supramolecular networks possessing square
and ellipsoidal cavities of different size. On the other hand, 3
exhibited inclusion of cadmium dimer governed by eight coordi-
nated cadmium coordination polymer. In this system, a 3D supra-
molecular network resulted from O–Hꢀ ꢀ ꢀO hydrogen bonding
interactions between dimeric unit and double stranded polymeric
[21] H. Eddaoudi, M. Li, M. O0Keeffe, O.M. Yaghi, Nature 402 (1999) 276.
[22] S.S.Y. Chui, S.M.F. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Williams, Science 283
(1999) 1148.
[23] B. Kesanli, W. Lin, Coord. Chem. Rev. 246 (2003) 305.
[24] S. Mandal, S. Natarajan, Inorg. Chem. 47 (2008) 5304.
[25] S. Furukawa, K. Hirai, K. Nakagawa, Y. Takashima, R. Matsuda, T. Tsuruoka, M.
Kondo, R. Haruki, D. Tanaka, H. Sakamoto, S. Shimomura, O. Sakata, S.
Kitagawa, Angew. Chem., Int. Ed. 48 (2009) 1766.
[26] Y. Dai, E. Ma, E. Tang, J. Zhang, Z. Li, X. Huang, Y. Yao, Cryst. Growth Des. 5
(2005) 1313.
[27] S. Paul, R. Clerac, N.G.R. Hearns, D. Ray, Cryst. Growth Des. 9 (2009) 4032.
[28] P.K. Nanda, V. Bertolasi, G. Aromí, D. Ray, Polyhedron 28 (2009) 987.
[29] T. Chattopadhyay, K.S. Banu, S. Chattopadhyay, A. Banerjee, S. Mondal, E.
Suresh, D. Das, Inorg. Chem. Commun. 12 (2009) 26.
chain. The C–Hꢀ ꢀ ꢀ
p
and
p p interactions led to 2D parallel double
ꢀ ꢀ ꢀ
layers incorporating dimeric complex. Thermal studies indicated
higher stability of 2 in comparison to 1 and 3. Further, four mono-
nuclear complexes based on H3BCCB have been prepared and the
representative complex 5 structurally characterized. Significant
fluorescence behavior of H3CCB and 1–3 has been observed in solid
state, where the intensity of ligand is strong relative to the com-
[30] H. Aghabozorg, N. Ilaie, M. Heidari, F. Manteghic, H. Pasdarb, Acta Crystallogr.,
Sect. E 64 (2008) m1351.
[31] K.S. Hagen, R. Lachicotte, A. Kitaygorodskiy, J. Am. Chem. Soc. 115 (1993)
12617.
plexes. Likewise, H3BCCB and
temperature.
5 also fluoresces at room
[32] X.-J. Ke, D.-S. Li, J. Zhao, C.-X. Meng, X.-N. Zhang, Q.-F. He, C. Li, Y.-Y. Wang,
Inorg. Chem. Commun. 13 (2010) 484.
[33] K.H. Chung, E. Hong, Y. Do, C.H. Moon, J. Chem. Commun. (1995) 2333.
[34] H.-P. Xiao, L.-G. Zhu, Acta Crystallogr., Sect. E 59 (2003) m964.
[35] D.D. Perrin, W.L.F. Armango, D.R. Perrin, Purification of Laboratory Chemicals,
Pergamon, Oxford, UK, 1986.
[36] G.M. Sheldrick, SHELXL-97, Program for X-ray Crystal Structure Refinement,
Göttingen University, Göottingen, Germany, 1997.
[37] G.M. Sheldrick, SHELXS-97, Program for X-ray Crystal Structure Solution,
Göttingen University, Göttingen, Germany, 1997.
Acknowledgments
Thanks are due to the Department of Science and Technology,
New Delhi, India for financial support through the scheme SR/S1/
IC-15/2006. One of the authors (R.P.), thanks the Council of Scien-
tific and Industrial Research, New Delhi, India for a Senior Research
Fellowship. We are also grateful to the Department of Chemistry,
Faculty of Science, Banaras Hindu University, Varanasi, India for
extending laboratory facilities and the National Institute of Ad-
vanced Industrial Science and Technology (AIST), Osaka, Japan for
single crystal X-ray diffraction facility.
[38] A.L. Spek, PLATON, A Multipurpose Crystallographic Tools, Utrecht University,
Utrecht, The Netherlands, 2000.
[39] A.L. Spek, Acta Crystallogr., Sect. A 46 (1990) C31.
[40] M.-H. Zeng, X-L. Feng, W.-X. Zhang, X.-M. Chen, Dalton Trans. (2006) 5294.
[41] V.R. Pedireddi, S. Varughese, Inorg. Chem. 43 (2004) 450.
[42] W.M. Singh, J.B. Baruah, Dalton Trans. (2009) 2352.
[43] J.S.M. Samec, J.-E. Backvall, P.G. Andersson, P. Brandt, Chem. Soc. Rev. 35
(2006) 237.
Appendix A. Supplementary material
[44] J.H. Choi, Y.H. Kim, S.H. Nam, S.T. Shin, M.-J. Kim, J. Park, Angew. Chem., Int. Ed.
41 (2002) 2373.
1H NMR spectra of the ligands H3CCB and H3BCCB, figures for
supramolecular assemblies in 1–3, TG-DSC curves for 1–3 and fluo-
rescence spectra of 1 and 3. CCDC 743407, 747607, 747608 and
787720 contain the supplementary crystallographic data for (1),
(2), (3) and (4). These data can be obtained free of charge from
[45] R.-Q. Zhong, R.-Q. Zou, D.S. Pandey, T. Kiyobayashi, Q. Xu, Inorg. Chem.
Commun. 11 (2008) 951.
[46] R.-Q. Zou, R.-Q. Zhong, M. Du, D.S. Pandey, Q. Xu, Cryst. Growth Des. 8 (2008)
452.
[47] Y. Qiu, Y. Li, G. Peng, J. Cai, L. Jin, L. Ma, H. Deng, M. Zeller, S.R. Batten, Cryst.
Growth Des. 10 (2010) 1332.
[48] D.P. Martin, M.R. Montney, R.M. Supkowski, R.L. LaDuca, Cryst. Growth Des. 8
(2008) 3091.