Journal of the American Chemical Society
ARTICLE
DNAÀprotein superstructures on a preparative scale are not yet
available.
founded by the European Comission, and the Zentrum f€ur
Angewandte Chemische Genomik (ZACG). C.-H.K. acknowl-
edges support through the International Max-Planck Research
School in Chemical Biology, Dortmund, and a student fellow-
ship from Deutscher Akademischer Austauschdienst (DAAD).
One important technical feature of the here reported system
stems from the fact that both domains not only display a specific
activity when brought together but that the domains can be
interrogated independently by convenient analytical assays. This
aspect clearly exceeds the concept of split enzymes, where the
separated components have no stand-alone activity,32 and it will
be of great importance for future development of advanced BM3-
based systems. It has already been emphasized that the BMP
domain can be adopted to the specific conversion of a broad
range of substrates by directed evolution,3 and, likewise, engi-
neering of BMR enables control over the cofactor, which, for
instance, can be switched from NADPH to NADH.47 Hence,
immediate perspectives of the modular BMR/BMR assembly
system arise from the fact that it can be used for ready exploration
of combinatorial assemblies of different P450 and reductase
domains to find suitable combinations. This approach will
significantly reduce the amount of cloning. Moreover, the control
of spatial configuration of the two domains by DNA scaffolds
adds an additional degree of freedom, because nucleic acid
hybridization is highly specific and its kinetics can be easily
controlled.46 One may thus foresee long-term applications
in which switchable DNA-BMP/BMR constructs are used for
drug delivery. For instance, constructs could be designed to be
triggered by micro RNAs, which are endogeneously expressed
during development and disease.48 Binding to nucleic acid
targets could switch on the construct’s activity, thereby enabling
localized enzymatic activation of prodrugs. In view of these
perspectives, we anticipate that the concept demonstrated here
could open up ways for the development of novel screening
systems or responsive biocatalysts for therapeutic applications.
’ REFERENCES
(1) Munro, A. W.; Daff, S.; Coggins, J. R.; Lindsay, J. G.; Chapman,
S. K. Eur. J. Biochem. 1996, 239, 403–409.
(2) Warman, A. J.; Roitel, O.; Neeli, R.; Girvan, H. M.; Seward, H. E.;
Murray, S. A.; McLean, K. J.; Joyce, M. G.; Toogood, H.; Holt, R. A.;
Leys, D.; Scrutton, N. S.; Munro, A. W. Biochem. Soc. Trans. 2005,
33, 747–753.
(3) Jung, S. T.; Lauchli, R.; Arnold, F. H. Curr. Opin. Biotechnol.
2011, 22, in press; DOI 10.1016/j.copbio.2011.02.008.
(4) Narhi, L. O.; Fulco, A. J. J. Biol. Chem. 1986, 261, 7160–7169.
(5) Li, Q. S.; Schwaneberg, U.; Fischer, P.; Schmid, R. D. Chemistry
2000, 6, 1531–1536.
(6) Otey, C. R.; Bandara, G.; Lalonde, J.; Takahashi, K.; Arnold, F. H.
Biotechnol. Bioeng. 2006, 93, 494–499.
(7) Carmichael, A. B.; Wong, L. L. Eur. J. Biochem. 2001, 268,
3117–3125.
(8) Lussenburg, B. M.; Babel, L. C.; Vermeulen, N. P.; Commandeur,
J. N. Anal. Biochem. 2005, 341, 148–155.
(9) Seifert, A.; Vomund, S.; Grohmann, K.; Kriening, S.; Urlacher,
V. B.; Laschat, S.; Pleiss, J. ChemBioChem 2009, 10, 853–861.
(10) Dietrich, J. A.; Yoshikuni, Y.; Fisher, K. J.; Woolard, F. X.;
Ockey, D.; McPhee, D. J.; Renninger, N. S.; Chang, M. C.; Baker, D.;
Keasling, J. D. ACS Chem. Biol. 2009, 4, 261–267.
(11) Rentmeister, A.; Arnold, F. H.; Fasan, R. Nat. Chem. Biol. 2009,
5, 26–28.
(12) Reinen, J.; Kalma, L. L.; Begheijn, S.; Heus, F.; Commandeur,
J. N.; Vermeulen, N. P. Xenobiotica 2011, 41, 59–70.
(13) Sawayama, A. M.; Chen, M. M.; Kulanthaivel, P.; Kuo, M. S.;
Hemmerle, H.; Arnold, F. H. Chemistry 2009, 15, 11723–11729.
(14) van Leeuwen, J. S.; Vredenburg, G.; Dragovic, S.; Tjong, T. F.;
Vos, J. C.; Vermeulen, N. P. Toxicol. Lett. 2011, 200, 162–168.
(15) Shapiro, M. G.; Westmeyer, G. G.; Romero, P. A.; Szablowski,
J. O.; Kuster, B.; Shah, A.; Otey, C. R.; Langer, R.; Arnold, F. H.; Jasanoff,
A. Nat. Biotechnol. 2010, 28, 264–270.
(16) Neeli, R.; Girvan, H. M.; Lawrence, A.; Warren, M. J.; Leys, D.;
Scrutton, N. S.; Munro, A. W. FEBS Lett. 2005, 579, 5582–5588.
(17) Kitazume, T.; Haines, D. C.; Estabrook, R. W.; Chen, B.;
Peterson, J. A. Biochemistry 2007, 46, 11892–11901.
(18) Girvan, H. M.; Dunford, A. J.; Neeli, R.; Ekanem, I. S.;
Waltham, T. N.; Joyce, M. G.; Leys, D.; Curtis, R. A.; Williams, P.;
Fisher, K.; Voice, M. W.; Munro, A. W. Arch. Biochem. Biophys. 2010,
507, 75–85.
’ ASSOCIATED CONTENT
S
Supporting Information. A detailed description of clon-
b
ing and heterologous expression of BMR and BMP fusion
proteins, 12-pNCA synthesis, oligonucleotide sequences, synth-
esis and characterization of DNAÀprotein conjugates, enzyme
assays and determination of hybridization kinetics, as well as
model estimations on the spatial configuration of DNA-linked
BM3 subdomains. This material is available free of charge via the
’ AUTHOR INFORMATION
(19) Boddupalli, S. S.; Oster, T.; Estabrook, R. W.; Peterson, J. A.
J. Biol. Chem. 1992, 267, 10375–10380.
(20) Sevrioukova, I.; Truan, G.; Peterson, J. A. Arch. Biochem.
Biophys. 1997, 340, 231–238.
(21) Li, Q. S.; Ogawa, J.; Shimizu, S. Biochem. Biophys. Res. Commun.
2001, 280, 1258–1261.
(22) Ortiz de Montellano, P. R.; De Voss, J. J. Nat. Prod. Rep. 2002,
19, 477–493.
Corresponding Author
Present Addresses
†Institute of Chemistry, Academia Sinica, 128 Academia Road
Sec. 2, Nankang, Taipei 11529, Taiwan.
(23) Seeman, N. C. Nature 2003, 421, 427–431.
(24) Simmel, F. C.; Dittmer, W. U. Small 2005, 1, 284–299.
(25) Lin, C.; Liu, Y.; Yan, H. Biochemistry 2009, 48, 1663–1674.
(26) Niemeyer, C. M. Angew. Chem., Int. Ed. 2010, 49, 1200–1216.
(27) Gianneschi, N. C.; Ghadiri, M. R. Angew. Chem., Int. Ed. 2007,
46, 3955–3958.
(28) Saghatelian, A.; Guckian, K. M.; Thayer, D. A.; Ghadiri, M. R.
J. Am. Chem. Soc. 2003, 125, 344–345.
(29) Fruk, L.; Niemeyer, C. M. Angew. Chem., Int. Ed. 2005, 44,
2603–2606.
’ ACKNOWLEDGMENT
We thank Andreas Arndt for assistance in protein expression,
Barbara Sacca for help in the design of DNA nanostructures,
Rebecca Meyer for assistance in the purification and modification
of oligonucleotides, and Marc Skoupi and Katja Straub for contribu-
tions in cloning. This work was supported in part by the Deutsche
Forschungsgemeinschaft (DFG) through project NI 399/10,
the project SMD in the course of FP7-NMP-2008-SMALL-2,
16117
dx.doi.org/10.1021/ja204993s |J. Am. Chem. Soc. 2011, 133, 16111–16118