3 G. Jiang, J. Chen, J.-S. Huang and C.-M. Che, Org. Lett., 2009,
11, 4568, and references cited therein.
4 For examples to nitriles: (a) Y. Zhang, K. Xu, X. Chen, T. Hu,
Y. Yu, J. Zhang and J. Huang, Catal. Commun., 2010, 11, 951;
(b) M. Kotani, T. Koike, K. Yamaguchi and N. Mizuno,
Green Chem., 2006, 8, 735; (c) K. Yamaguchi and N. Mizuno,
Chem.–Eur. J., 2003, 9, 4353; (d) Y. Maeda, T. Nishimura and
S. Uemura, Bull. Chem. Soc. Jpn., 2003, 76, 2399;
(e) K. Yamaguchi and N. Mizuno, Angew. Chem., Int. Ed., 2003,
42, 1480; (f) K. Mori, Y. Yamaguchi, T. Mizugaki, K. Ebitani and
K. Kaneda, Chem. Commun., 2001, 461. To amide: (g) J. W. Kim,
K. Yamaguchi and N. Mizuno, Angew. Chem., Int. Ed., 2008,
47, 9249; (h) S. K. Klitgaard, K. Egablad, U. V. Mentzel,
A. Popov, T. Jensen, E. Taarning, I. S. Nielsen and
C. H. Christensen, Green Chem., 2008, 10, 419. To acids:
(i) R. Neumann and M. Levin, J. Org. Chem., 1991, 56, 5707. To
aldehydes or ketones: (j) J. Srogl and S. Voltrova, Org. Lett., 2009,
11, 843. To oximes: (k) K. Suzuki, T. Watanabe and
S.-I. Murahashi, Angew. Chem., Int. Ed., 2008, 47, 2079. To
oxaziridines: (l) Y.-M. Lin and J. Muller, J. Org. Chem., 2001,
66, 8282. To N-monoalkylhydroxylamines: (m) A. Heydari and
S. Aslanzadeh, Adv. Synth. Catal., 2005, 347, 1223. To mixtures:
(n) S. Kamiguchi, A. Nakamura, A. Suzuki, M. Kodomari,
M. Nomura, Y. Iwasawa and T. Chihara, J. Catal., 2005,
230, 204; (o) S. Minakata, Y. Ohshima, A. Takemiya, I. Ryu,
M. Komatsu and Y. Ohshiro, Chem. Lett., 1997, 311;
(p) A. J. Bailey and B. R. James, Chem. Commun., 1996, 2343.
5 (a) S. Kodama, J. Yoshida, A. Nomoto, Y. Ueta, S. Yano,
M. Ueshima and A. Ogawa, Tetrahedron Lett., 2010, 51, 2450;
(b) K. Nakayama, M. Hamamoto, Y. Nishiyama and Y. Ishii,
Chem. Lett., 1993, 1699.
6 (a) M.-H. So, Y. Liu, C.-M. Ho and C.-M. Che, Chem.–Asian J.,
2009, 4, 1551; (b) A. Grirrane, A. Corma and H. Garcia, J. Catal.,
2009, 264, 138; (c) L. Aschwanden, T. Mallat, F. Krumeich and
A. Baiker, J. Mol. Catal. A: Chem., 2009, 309, 57;
(d) L. Aschwanden, B. Panella, P. Rossbach, B. Keller and
A. Baiker, ChemCatChem, 2009, 1, 111; (e) B. Zhu, M. Lazar,
B. G. Trewyn and R. J. Angelici, J. Catal., 2008, 260, 1; (f) B. Zhu
and R. J. Angelici, Chem. Commun., 2007, 2157.
7 A. Prades, E. Peris and M. Albrecht, Organometallics, 2011,
30, 1162.
8 R. D. Patil and S. Adimurthy, Adv. Synth. Catal., 2011, 353,
1695–1700.
9 M. Mure, Acc. Chem. Res., 2004, 37, 131.
Scheme 1 Possible mechanisms for oxidative coupling of amines.
Scheme 2 Tandem oxidative aza Diels–Alder reaction.
eliminates a hydrogen peroxide with the recovery of aromaticity
as the driving force (Scheme 1–III).
Encouraged by high yields of the coupling of benzylamines
and the ease of separation of the imines from water, an effort
was initiated to explore the feasibility of integrating such
reactions in transformations of more practical interest such
as aza Diels–Alder reactions. The imine product generated
from amine oxidative coupling is extracted by diethyl ether.
After removal of the solvent, it is mixed with a methanol solution
of Danishefsky’s diene to form an aza Diels–Alder product
(Scheme 2). N-Aryl imines are previously found to undergo
efficient acid-free aza Diels–Alder reaction in methanol.22
Observation of an acid-free aza Diels–Alder reaction of N-alkyl
imines substantially expands the scope of the synthesis of
N-alkyl-4-pyridones.
In summary, we have developed a green protocol for
oxidative coupling of benzylamines to imines by simply refluxing
aerated suspensions of water and benzylamines. This simple
metal-free system which uses dioxygen as the sole oxidant may
find a wide range of applications in green oxidation chemistry.
Mechanistic studies accessible for this ‘‘on water’’ reaction are
on the way to obtain a deeper understanding of the origins of
high efficiency and high selectivity of these aerobic oxidative
coupling reactions.
10 (a) K. Chi, H. Y. Hwang, J. Y. Park and C. W. Lee, Synth. Met.,
2009, 159, 26; (b) T. Hirao and S. Fukuhara, J. Org. Chem., 1998,
63, 7534; (c) M. Higuchi, I. Ikeda and T. Hirao, J. Org. Chem.,
1997, 62, 1072; (d) T. Hirao, M. Higuchi, Y. Ohshiro and I. Ikeda,
Chem. Lett., 1993, 1889.
11 X. Lang, H. Ji, C. Chen, W. Ma and J. Zhao, Angew. Chem., Int. Ed.,
2011, 50, 3934.
12 F. Su, S. C. Mathew, L. Mohlmann, M. Antonietti, X. Wang and
¨
S. Blechert, Angew. Chem., Int. Ed., 2011, 50, 657.
13 (a) S.-I. Naya, Y. Yamaguchi and M. Nitta, Tetrahedron, 2005,
61, 7384; (b) M. Nitta, D. Ohtsuki, Y. Mitsumoto and S.-I. Naya,
Tetrahedron, 2005, 61, 6073; (c) S.-I. Naya and M. Nitta, Tetrahedron,
2004, 60, 9139; (d) Y. Mitsumoto and M. Nitta, J. Org. Chem., 2004,
69, 1256.
We are grateful for support by the starter grant from Peking
University, NSFC (Grants 20841002 and 20801002).
14 S. M. Landge, V. Atanassova, M. Thimmaiah and B. Torok,
Tetrahedron Lett., 2007, 48, 5161.
15 G. Chu and C. Li, Org. Biomol. Chem., 2010, 8, 4716.
16 B. E. Love and J. Ren, J. Org. Chem., 1993, 58, 5556.
¨
¨
Notes and references
1 For examples of alcohol oxidation: (a) S. Wertz and A. Studer, Adv.
Synth. Catal., 2011, 353, 69; (b) F. Su, S. C. Mathew, G. Lipner,
X. Fu, M. Antonietti, S. Blechert and X. Wang, J. Am. Chem. Soc.,
2010, 132, 16299; (c) R. Mu, Z. Liu, Z. Yang, Z. Liu, L. Wu and
Z. Liu, Adv. Synth. Catal., 2005, 347, 1333. Hydrocarbon oxidation:
(d) Y. Wang, H. Li, J. Yao, X. Wang and M. Antonietti, Chem. Sci.,
2011, 2, 446; (e) G. Zheng, C. Liu, Q. Wang, M. Wang and G. Yang,
Adv. Synth. Catal., 2009, 351, 2638; (f) H. Miao, X. Tong and J. Xu,
Adv. Synth. Catal., 2005, 347, 1953.
2 For reviews on the formation of imines and typical reactions:
(a) S.-I. Murahashi, Angew. Chem., Int. Ed. Engl., 1995, 34,
2443; (b) J. P. Adams, J. Chem. Soc., Perkin Trans. 1, 2000, 125;
(c) J. S. M. Samec, A. H. Ell and J.-E. Backvall, Chem.–Eur. J.,
2005, 11, 2327.
17 S. Narayan, J. Muldoon, M. G. Finn, V. V. Fokin, H. C. Kolb and
K. B. Sharpless, Angew. Chem., Int. Ed., 2005, 44, 3275.
18 R. N. Butler and A. G. Coyne, Chem. Rev., 2010, 110, 6302.
19 (a) V. Nardello-Rataj, L. Caron, C. Borde and J. Aubry, J. Am.
Chem. Soc., 2008, 130, 14914; (b) C. Borde, V. Nardello,
L. Wattebled, A. Laschewsky and J. Aubry, J. Phys. Org. Chem.,
2008, 21, 652, and references cited therein.
20 (a) N. Shapiro, M. Kramer, I. Goldberg and A. Vigalok, Green
Chem., 2010, 12, 582; (b) N. Shapiro and A. Vigalok, Angew.
Chem., Int. Ed., 2008, 47, 2849.
21 J. K. Beattie, C. S. P. McErlean and C. B. W. Phippen, Chem.–Eur. J.,
2010, 16, 8972.
22 Y. Yuan, X. Li and K. Ding, Org. Lett., 2002, 4, 3309.
´
¨
c
10150 Chem. Commun., 2011, 47, 10148–10150
This journal is The Royal Society of Chemistry 2011