By copolymerization with appropriate acceptors, these
fascinating structures have produced a variety of pro-
mising D-A polymers that led to high-performance solar
cells. We envision that the electronic interactions be-
tween the donor and the acceptor units in a D-A
copolymer might be greatly enhanced, if the neighboring
electron-rich donor and electron-deficient acceptor
units along the polymer backbone are covalently locked
and conformationally rigidified into a coplanar inter-
fused D-A assembly.6 To our surprise, however, utiliza-
tion of a fused D-A polymer for OPVs has not been well
exploited presumably due to the lack of a useful syn-
thetic approach to prepare a suitable fused D-A mono-
mer precursor. Among a range of electron-deficient
heteroaromatic units, the benzothiadiazole (BT), ben-
zoselenadiazole (BSe), and quinoxaline (QX) units are of
particular interest due to their strong electron affinity
and simple planar structure.7 The benzothiadiazole unit
(acceptor) coupled with two electron-rich thienyl rings
(donor) to form a nonfused D-A-D 4,7-di(thiophen-2-
yl)benzothiadiazole (DTBT) unit has been the com-
monly used core structure in D-A polymers for OPVs.8
Inspired by the skeleton of the DTBT unit, we have
developed a fused D-A-D dithienopyrrolobenzothiadia-
zole (DTPBT) structure in which the 3-positions of the
two outer thiophenes (D) are covalently linked to the 5-
and 6-positions of the central benzothiadiazole core (A)
by a nitrogen bridge, forming two pyrrole rings em-
bedded in a pentacyclic structure (Scheme 1). Further-
more, a fused A-D-A type structure, dibenzothiadia-
zolopyrrolothiophene (DBTPT) with reversed structural
arrangement of BT and thiophene units in DTPBT, was
also synthesized (Scheme 2). More importantly, the struc-
tureofDTPBTcanserve asa useful precursortosynthesize
two other fused D-A-D structures, dithienopyrrolobenzo-
selenadiazole (DTPBSe) and dithienopyrroloquinoxaline
(DTPQX), with different acceptors. The nitrogen bridges
in the pentacyclic units also allow us to introduce aliphatic
side chains to promote sufficient solubility of the resultant
conjugated polymers.
Scheme 1 depicts the synthetic route of DTPBT.
Nitration of 4,7-dibromobenzothiadiazole 1 afforded
the 4,7-dibromo-5,6-dinitrobenzothiadiazole 2 which
was then reacted with 2-tributylstannyl thiophene by
Stille coupling to yield compound 3. Double intramole-
cular Cadogan reductive cyclization of 3 in the presence
of triethyl phosphate successfully furnished the fused
D-A-D structure 4 in 61% yield.9 N-Alkylation of 4 with
an excess amount of 1-bromododecane in the presence of
potassium hydroxide resulted in the formation of
DTPBT in 71% yield. Fortunately, NBS bromination
of DTPBT regioselectively occurred at the 5-position of
the thienyl moieties to yield the brominated monomer
Br-DTPBT which can be readily polymerized with a
variety of conjugated units to prepare polymers contain-
ing fused D-A segments.
Scheme 1. Synthesis of Fused D-A-D Pentacylic Structure
DTPBT
The synthesis of fused A-D-A DBTPT is shown in
Scheme 2. Suzuki coupling of compound 6 with 7 afforded
the compound 8. Double intramolecular Cadogan annula-
tion of 8 obtained the desired product 9 where the central
dipyrrolothiophene moiety was fused with two outer ben-
zothiadiazole units. N-Alkylation of 9 resulted in DBTPT
with two dodecyl side chains in a lower yield of 11%
probably due to the less nucleophilic nitrogens as a result
of two electron-withdrawing BT units.
ꢀ
(6) (a) Guegano, X.; Kanibolotsky, A. L.; Blum, C.; Mertens,
Scheme 2. Synthesis of Fused A-D-A DBTPT
S. F. L.; Liu, S.-X.; Neels, A.; Hagemann, H.; Skabara, P. J.; Leutwyler,
S.; Wandlowski, T.; Hauser, A.; Decurtins, S. Chem.;Eur. J. 2009, 15,
63. (b) Jia, C.-Y.; Liu, S.-X.; Tanner, C.; Leiggener, C.; Sanguinet, L.;
Levillain, E.; Leutwyler, S.; Hauser, A.; Decurtins, S. Chem. Commun.
2006, 42, 1878. (c) Loosli, C.; Jia, C.-Y.; Liu, S.-X.; Haas, M.; Dias, M.;
Levillain, E.; Neels, A.; Labat, G.; Hauser, A.; Decurtins, S. J. Org.
Chem. 2005, 70, 4988. (d) Jaggi, M.; Blum, C.; Dupont, N.; Grilj, J.; Liu,
S.-X.; Hauser, J.; Hauser, A.; Decurtins, S. Org. Lett. 2009, 11, 3096.
(e) Balaji, G.; Shim, W. L.; Parameswaran, M.; Valiyaveettil, S.
Org. Lett. 2009, 11, 4450. (f) Zhu, G.; Conner, S. E.; Zhou, X.; Shih,
C.; Li, T.; Anderson, B. D.; Brooks, H. B.; Campbell, R. M.; Considine,
E.; Dempsey, J. A.; Faul, M. M.; Ogg, C.; Patel, B.; Schultz, R. M.;
Spencer, C. D.; Teicher, B.; Watkins, S. A. J. Med. Chem. 2003, 46,
2027.
(7) Hou, J.; Park, M.-H.; Zhang, S.; Yao, Y.; Chen, L.-M.; Li, J.-H.;
Yang, Y. Macromolecules 2008, 41, 6012.
(8) (a) McNeill, C. R.; Halls, J. J. M.; Wilson, R.; Whiting, G. L.;
Berkebile, S.; Ramsey, M. G.; Friend, R. H.; Greenham, N. C. Adv.
Funct. Mater. 2008, 18, 2309. (b) Svensson, M.; Zhang, F.; Veenstra,
€
S. C.; Verhees, W. J. H.; Hummelen, J. C.; Kroon, J. M.; Inganas, O.;
(9) (a) Freeman, A. W.; Urvoy, M.; Criswell, M. E. J. Org. Chem.
2005, 70, 5014. (b) Qi, T.; Guo, Y.; Liu, Y.; Xi, H.; Zhang, H.; Gao, X.;
Liu, Y.; Lu, K.; Du, C.; Yu, G.; Zhu, D. Chem. Commun. 2008, 44, 6227.
(c) Balaji, G.; Phua, D. I.; Shim, W. L.; Valiyaveettil, S. Org. Lett. 2010,
12, 232.
Andersson, M. R. Adv. Mater. 2003, 15, 988. (c) Zhang, F.; Jespersen,
€
K. G.; Bjorstrom, C.; Svensson, M.; Andersson, M. R.; Sundstrom, V.;
Magnusson, K.; Moons, E.; Yartsev, A.; Inganas, O. Adv. Funct. Mater.
€
€
€
2006, 16, 667.
Org. Lett., Vol. 13, No. 20, 2011
5485